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ABSTRACT

INTERACTIVE VISUALIZATION WORKFLOWS FOR MITIGATING
ANALYTICAL UNCERTAINTY

by
Kaustav Bhattacharjee

This dissertation takes a process-centric and stakeholder-first perspective for handling
analytical uncertainty: the form of uncertainty that confronts data analysts’
insight-generation processes in high-consequence decision-making scenarios. The cost
of an incorrect decision when data is used for movie recommendations as opposed
to when personal data is used to drive insights or when data-driven modeling is
used to drive real-time decisions for maintaining the health of a grid are vastly
different in terms of consequences. This dissertation looks at analytical uncertainty
in two real-world scenarios: i) how sensitive information leakage can be prevented
during the open data release process with data custodians being the stakeholders,
and ii) how errors in energy forecasting can be detected or prevented when deploying
them in power systems, with grid operators being the stakeholders. Across both
these scenarios, this dissertation investigates how interactive visualization workflows
can empower respective data stakeholders to reveal privacy vulnerabilities in open
datasets and improve trust in Al forecasting models within the power sector. The
first contribution is a systematic analysis of existing visual analytics methods for
addressing data privacy and examining research gaps and future opportunities.
Building on this foundation, an ethical hacking exercise was conducted to identify
vulnerabilities in the open data ecosystem, leading to the second contribution of
this dissertation: the development of the PRIVEE workflow, which enables data
defenders to assess disclosure risks associated with open datasets. This dissertation
showcases the effectiveness of PRIVEE through case studies in collaboration with

domain experts. Recognizing the need to understand the utility of linked datasets,



the third contribution presents the algorithm for a utility metric and the VALUE
interface, allowing users to explore the utility of joining datasets across over 100
open data portals. This can quickly escalate into a combinatorial explosion due to
the various factors involved in joining multiple datasets differently. Thus, as the
fourth contribution, this dissertation explores how visual analytic interventions can
help balance privacy and utility factors in the context of multi-way joins through the
web-based interface LinkLens. Finally, the dissertation extends these principles to the
energy sector, contributing to the development of the Forte application, which helps
grid operators evaluate AI model performance. This work enhances human-data trust
and informed decision-making by equipping stakeholders across disparate domains

with interactive visualization workflows.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Uncertainty, often defined as the “goodness” of a result, is an inherent aspect of
data analysis, arising from multiple sources [2]. These include data quality issues,
modeling assumptions, measurement errors, and sampling biases. For instance,
inaccuracies, missing values, and biases in the data can introduce uncertainty.
Similarly, the choice of analytical techniques and assumptions made during modeling
can influence results, while measurement errors and sampling biases add further
complexity. However, analytical uncertainty, in particular, stems from the analytical
process itself. Decisions made during data exploration, such as feature selection and
preprocessing, impact outcomes, as does the selection of models, which often carry
inherent variability. Additionally, parameter tuning and the subjective interpretation
of results can further amplify this form of uncertainty.

Analytical uncertainty becomes particularly risky when applied to decision-
making. In today’s data-driven world, its impact varies dramatically across
different domains. While an incorrect movie recommendation may lead to minor
disappointment, inaccurate analyses of personal data or energy forecasting can have
far-reaching consequences for individuals and society at large. Moreover, if not
communicated clearly, analytical uncertainty can lead to financial losses and erode
public trust. A notable example occurred in 1997 when the U.S. National Weather
Service (NWS) predicted that the Red River in Grand Forks would rise to 49 feet.
Based on this forecast, local authorities constructed levees to withstand a flood of
up to 51 feet. Unfortunately, the river ultimately rose to 54 feet, causing billions of

dollars in damage and the loss of lives [3]. Had the NWS properly communicated



the uncertainty in their forecast (+/- 9 feet), much of this devastation could have
been avoided. Thus, effective policy-making, grounded in a clear understanding
of analytical uncertainty, is essential for safeguarding public trust and financial
resources.

In this context, there is a famous saying that data is the new oil and Artificial
Intelligence (Al) is the new electricity [4, 5, 6]. This reflects the immense potential
of data and Al to shape decisions and policies that impact people’s lives. Access
to large-scale data for these insights, nonetheless, remains a complex challenge. A
much-needed boost came with the U.S. Government’s Open Government directive
in 2009, followed by the signing of the Open Data Charter by G8 leaders in 2013,
which accelerated the adoption of open datasets that are freely available for use,
reuse, and redistribution [7, 8, 9]. Though these are generally anonymized before
release, joining two anonymized datasets based on quasi-identifiers can lead to the
disclosure of sensitive information. Moreover, accessibility to these datasets can be
considered a double-edged sword. On the one hand, open data movement has enabled
free access to these datasets through open data portals like NYC Open Data [10],
Kansas City Open Data [11], and City of Dallas Open Data [12], democratizing
access to hitherto proprietary data. On the other hand, inadvertent data leaks could
compromise the privacy of human data subjects. For example, in 2016, the Australian
Department of Health released de-identified medical records for 2.9 million patients
(10% of the population). Yet, researchers were able to re-identify the patients and
their doctors using other open demographic information within a few months [13].
In another example, passengers’ private information was disclosed through the public
transportation open data released by the city municipal of Riga, Latvia [14]. These
examples demonstrate that privacy, a fundamental human right, can be compromised
when uncertainty in the analytical process of disseminating open datasets is not

adequately addressed.



On the other hand, AI has a significant impact on our daily lives in many
ways. Recent advances in artificial intelligence have accelerated the development
of models across various domains, including healthcare, economics, politics, and
smart grids. For example, Google’s DeepMind Health has developed an Al system
that analyzes retinal images to detect early signs of diabetic retinopathy, while
the OECD uses artificial intelligence models to forecast weekly GDP growth using
data from 46 countries [15, 16]. In another example, Pacific Northwest National
Laboratory (PNNL) has developed DeepGrid, an open-source platform that uses
deep reinforcement learning to help power system operators in creating more robust
emergency control protocols for the electric grid [17]. Nonetheless, the uncertainty
inherent in the results of these Al models can significantly impact people’s lives.
For example, inaccurate forecasting of power consumption in a region can lead
to substantial losses for electric utility companies, costs that ultimately fall on
consumers. US Department of Energy (DOE) also warns that Al models used
to make predictions about unexpected events, such as extreme weather, “can lead
to unpredictable or inaccurate behavior,” potentially resulting in inefficient power
restoration efforts or misallocation of resources by utility companies [18]. In this
context, mitigating analytical uncertainty while interpreting results from AI models
is essential in today’s world.

In this context, visual analytics can play an important role in mitigating
uncertainty in the analytical process. As Sacha et al. noted, it can provide interactive
tools that allow users to explore and understand the propagation of uncertainties
through the analytical pipeline [19]. By visualizing uncertainties at different stages
of data transformation and analysis, visual analytics enables users to build awareness
of potential sources of error or bias. This increased awareness can lead to more
informed decision-making and help calibrate users’ trust in the analytical outcomes.

Furthermore, visual analytics can support trust building by offering transparency



in the analytical process, allowing users to interactively explore different scenarios
and understand how uncertainties impact final results. By bridging the gap between
machine-generated uncertainties and human trust-building processes, visual analytics
can provide a framework for more reliable knowledge generation in complex analytical
tasks. It can play a crucial role in both privacy-preserving data analysis and net
load forecasting by helping stakeholders understand, analyze, and mitigate analytical
uncertainty. In the domain of privacy-preserving data analysis, visualization tools
can assist data owners and custodians in evaluating the effectiveness of different
anonymization techniques (such as k-anonymity, [-diversity, and t¢-closeness) and
understanding the trade-offs between data utility and privacy protection. For
example, Rode et al. demonstrated how visualization can help in assessing disclosure
risks and configuring appropriate levels of anonymization [20]. Montemayor et
al. further showed how visual representations can aid in understanding privacy
risks in complex datasets [21]. In the context of net load forecasting, interactive
visualization can empower energy scientists and grid operators to explore net load
variability, assess forecast errors, and analyze the effects of various input variables
on model performance across different time periods and seasons. Dasgupta et al.
showed that visual analytics can significantly enhance trust in model outputs during
complex sense-making tasks, which is particularly relevant for understanding and
interpreting net load forecasts [22]. Kandakatla et al. argued that these techniques
would play a critical role in enabling trust-augmented artificial intelligence and
machine learning (AI/ML) applications in the energy sector [23]. Furthermore,
interactive visualizations can help in understanding the impact of increasing solar
energy penetration on traditional forecasting models and in evaluating the reliability
and robustness of deep learning models in real-world scenarios with noisy inputs. By
providing interactive and intuitive interfaces, these tools can facilitate the exploration

of complex datasets and model outputs, enabling stakeholders to make more informed



decisions in both privacy preservation and energy planning. Ultimately, these
approaches can lead to more effective privacy policies, improved anonymization
techniques, and more accurate and reliable net load forecasts, addressing the
analytical uncertainties inherent in both domains.

Thus, in order to develop visual analytic solutions for analytical uncertainty
mitigation, we first conducted a survey of privacy-preserving data visualization [24].
We categorized the existing literature into different visual analytic tasks and reflected
on the research gaps and future opportunities. Some of the gaps thus identified
revolved around uncertainty visualization, dynamic visualization of risks for privacy
stakeholders, and privacy-aware citizen science. During this research, we recognized
that open datasets are a key component in enabling open governance, thereby
fostering trust between citizens and their government. To explore this further, we
collaborated with domain experts to conduct an ethical hacking exercise focused on
the open data ecosystem, aiming to identify vulnerabilities and assess the associated
risks for different data stakeholders. Although these datasets are anonymized before
release, we found multiple examples where joining two datasets could disclose sensitive
information about the data subjects [25]. But finding these datasets is akin to finding
a needle in a haystack, due to the combinatorial explosion that leads to uncertainty
in the analytical process. This ethical hacking exercise allowed us to adopt an
attacker’s perspective and led to the development of PRIVEE, a risk inspection
workflow that enables data defenders to inspect all possible combinations of their
datasets and evaluate possible disclosures at the record level [26]. We also developed a
web-based interface grounded in this workflow and in this dissertation, we discuss the
visual analytic interventions required to perform the workflow through our interface.
Additionally, we present two case studies that demonstrate the effectiveness of this

approach in evaluating disclosure risks and inspecting actual disclosures.



During this research, we realized that users are also interested in understanding
the utility of joining open datasets and whether doing so would be worthwhile. To
address this, we developed a utility metric that helps users evaluate multiple join
combinations and select the one most useful for their needs [27]. We also developed
a web-based interface VALUE, where users can join datasets from over 100 open
data portals and compare them based on the utility of the joined datasets. In
this dissertation, we discuss the visualization techniques used to implement this
interactive interface, along with a usage scenario. Through discussions with the
research community, we learned that researchers often need to join multiple open
datasets for their work. This, in turn, introduces greater combinatorial complexity
due to the various factors involved in these multi-way joins. To address this, we
developed the workflow LinkLens, which balances privacy and utility considerations
in multi-way joins, helping researchers make informed decisions during the analytical
process. In a similar fashion, we distill this workflow through a visualization interface
and discuss its design principles through this dissertation.

As mentioned earlier, analytical uncertainty arises from the analysis process
itself and can significantly impact the interpretation of results from AI models. To
address this, we wanted to determine whether visual analytic solutions could enhance
the interpretability of these models. Hence, in this dissertation, we collaborated
with energy scientists to develop Forte, a visual analytics-based application that
addresses analytical uncertainty in the results of net load forecasting models across
diverse time periods and input scenarios [28]. Our system enables researchers and
grid operators to assess net load variability, analyze the effects of various input
variables on model performance, and evaluate forecast uncertainties in the presence
of noisy inputs. Forte provides a broad understanding of various aspects related
to net load forecasting, allowing users to compare model forecasts with actual

net load values across different seasons and prediction horizons, and gain insights



into the impact of variables like temperature, humidity, and apparent power on
net load forecasts. However, trust in the analytical process is crucial for the
effective deployment and utilization of these models. Therefore, we extended this
workflow to facilitate comparison among multiple models and enhance trust in the
model outcomes [29]. This interface, incorporating carefully selected visual analytic
interventions, facilitates the comparison of multiple models across various parameters,
including solar penetration levels, dataset resolutions, and different hours of the day.
By enabling users to compare our net load forecasting model with a reference model,
we provide a comprehensive framework for evaluating model performance and building
confidence in the results. Ultimately, these approaches enhance trust and confidence
in net load forecasting models, supporting data-driven decision-making in energy
planning and grid operations.

This dissertation addresses the critical challenge of analytical uncertainty in
high-stakes decision-making scenarios, focusing on open data release and energy grid
management. By developing interactive visualization workflows and tools tailored
to the specific needs of data custodians and grid operators, we aim to empower
stakeholders to make more informed decisions in situations where errors can have
significant consequences. These tools are designed to be both effective and practical
for real-world implementation, enabling users to better understand and mitigate
uncertainty in their respective domains. This work takes a process-centric and
stakeholder-first perspective, recognizing that the cost of incorrect decisions varies
drastically depending on the context - from relatively benign movie recommendations
to potentially catastrophic outcomes in power grid management. In the realm of open
data, we investigate how sensitive information leakage can be prevented during the
release process, with data custodians as key stakeholders. For energy forecasting,
we explore methods to improve trust when deploying Al models in power systems,

with grid operators as the primary stakeholders. These two scenarios were selected



based on the analytical pipeline described in Sacha et al.’s paper, where uncertainty
can arise from any part of the analytical pipeline, be it the model/system side or the
human user side [19]. Using this pipeline, we selected two decision scenarios: one from
the human side (uncertainty while analyzing open datasets for disclosures) and one
from the system side (uncertainty in a net load forecasting model). Ultimately, this
work contributes to improving decision-making processes in high-stakes environments,
enhancing privacy protection in open data, and building trust in Al forecasting for
critical infrastructure like power grids.

In this dissertation, we begin by outlining the background along with the core
concepts related to this problem. We then present a survey and analysis of the
research gaps in this domain (Chapter 2). Following this, we highlight some of
the vulnerabilities we observed in the open data ecosystem that could lead to the
disclosure of sensitive information (Chapter 3). Building on this foundation, we
introduce our disclosure risk inspection workflow, PRIVEE, and discuss the design
principles used in this interface (Chapter 4). Next, we present the algorithm for
our utility metric and discuss a usage scenario in which the users can explore the
utility of joining open datasets using our interface, VALUE (Chapter 5). We extend
these algorithms and design principles for multi-way joins and discuss how the
privacy and utility factors can be balanced using our tool, LinkLens (Chapter 6).
Following this, we discuss our tool, Forte, which helps grid operators and power
scientists evaluate the performance of an Al model amid uncertainties arising from
various input scenarios and noisy conditions (Chapter 7). Next, we discuss extending
this workflow to allow model comparison across different time points and seasons,
ultimately enhancing trust in the AI model (Chapter 8). Finally, we conclude by
exploring how interactive visualization workflows can mitigate analytical uncertainty
in both domain-agnostic and domain-specific use cases while also discussing potential

future research directions (Chapter 9).



1.2 Background

In this section, we introduce some key concepts related to this dissertation. We
begin by explaining uncertainty and its various types, followed by a brief overview of
open datasets. Next, we examine the stakeholders in the open data ecosystem and
their roles in managing uncertainty and safeguarding privacy. We then explore the
re-identification problem in open datasets and review some of the anonymization
methods proposed to address it. Following this, we shift focus to net load
forecasting, discussing how uncertainty in analyzing AI model results can lead to
misinterpretation. We conclude this section by exploring the role of human factors in
visualizations, thus providing a foundation for privacy-preserving data visualizations
that help mitigate analytical uncertainty.

What is Uncertainty?: Uncertainty in measurement is defined as the parameter
associated with the result of a measurement that characterizes the dispersion of
values that could be reasonably attributed to the quantity being measured (also
known as measurand) [30]. For example, standard deviation can be used to measure
the deviation of a variable along its mean. Similarly, a confidence interval is
used to quantify the uncertainty surrounding a forecast or prediction. It shows
how an estimate differs from the true value, helping users gauge the degree of
confidence in the results [31]. In simpler terms, uncertainty is the measure of the
“goodness” of the results of a process [2]. Several metrics are available to quantify
uncertainty. For example, standard error and the coefficient of variation are commonly
used to interpret economic estimates across different sectors. Standard error helps
assess possible sampling error, while the coefficient of variation provides the relative
standard error in comparison to the actual estimate. For instance, the UK’s Office
of National Statistics reported that the total turnover in the education sector for

2016 was £42,649 million, with a standard error of £526.8 million, yielding a 1%



coefficient of variation [32, 33]. Other metrics, such as confidence intervals and
statistical significance, are also used to measure uncertainty.

Analytical uncertainty refers to the uncertainty in the results of an analysis,
which can influence the decisions made based on those results. In short, it is the
uncertainty in the process itself. This uncertainty can stem from multiple factors,
including the data, the assumptions made, and the nature of the analytical questions
posed. It is central to decision-making and risk analysis, as decision-makers need to
grasp the uncertainty surrounding the impacts of their choices. Reducing analytical
uncertainty requires decision-makers to align on the questions being asked and how
the outcomes will inform their decisions. For instance, consider a scenario where a
pharmaceutical company is evaluating the safety of a new drug. While the company
may be interested in determining if the drug is effective, it is equally important
to assess the degree of uncertainty surrounding potential adverse side effects. A
misjudgment in this case could lead to serious health consequences for patients.
Analytical uncertainty can be classified in several ways, with a common framework
dividing it into “known knowns,” “known unknowns,” and “unknown unknowns” [34].
Known knowns (or aleatory uncertainty) refer to things we are aware of, such as
the range of variability inherent in a model’s prediction due to its probabilistic
nature. This type of uncertainty is quantifiable but often unavoidable, though it
can be mitigated through techniques like data smoothing. Known unknowns (or
epistemic uncertainty) are things that we know we don’t know and encompass the
gaps in knowledge about system complexities, such as uncertainty about whether
a model will perform consistently with noisy data. This can usually be quantified
through sensitivity analysis and can be reduced by gathering more knowledge and
filling those gaps. Unknown unknowns are things that we don’t know we don’t
know. It arises from factors that were previously unrecognized and thus cannot

typically be quantified. One example is the analytical uncertainty in joining open

10



datasets and the risk of revealing sensitive information. Our work aims to develop
visualization workflows to enable users to systematically explore these open dataset
joins, identify vulnerabilities, and take corrective action. The aim of this dissertation
is to convert "unknown unknowns” into "known unknowns” by equipping users with
tools to evaluate uncertainty within the open data ecosystem. In addition, this
research investigates whether visualization workflows can also assist with known
unknowns. To that end, we developed visual analytics tools to address uncertainty in
net load forecasting, a domain currently classified under known unknown uncertainty.
Researchers have explored various ways to assess the performance of AI models, and
this dissertation aims to enhance these methods with our visual solutions. However,
addressing the disclosure of sensitive information through open datasets remains a
significant challenge, as it still resides in the unknown unknown category. This
underscores the need to first understand the open data ecosystem and its stakeholders
before defining processes and workflows to tackle this issue.

Open data ecosystem: The journey of the open data ecosystem commenced
with the US Government’s Open Government Directive in 2009, which mandated
federal agencies to make their data publicly available [8]. This initiative sought to
enhance transparency, participation, and collaboration by increasing access to federal
datasets. In 2013, this movement gained international traction when G8 leaders
signed the Open Data Charter, committing to principles such as making government
data open by default and improving its quality, accessibility, and re-usability [9, 35].
As a result, open datasets, covering areas like education, health, transportation, and
crime statistics, are now made available without restrictions by government agencies,
research institutions, and public organizations. Platforms like Data.gov [36], the
London Datastore [37], and NYC Open Data Portal [38] facilitate easy access to
these datasets for public use. The breadth of data spans public administration,

environmental monitoring, scientific research, and economic indicators. Nowadays,
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tools like Urban Profiler [39], Socrata Discovery API [40], Urban Forest[41] have
made it even easier to find relevant data for research. It has also proven instrumental
in shaping public policies, as exemplified by the Behavioral Risk Factor Surveillance
System (BRFSS) in the United States, which has been used to monitor and respond to
public health emergencies in real-time, such as developing the public health response
to Hurricane Katrina in 2005 and tracking HIN1 vaccine uptake during the 2009
influenza pandemic [42]. In urban planning, cities like New York have leveraged open
transportation data to optimize public transit routes and reduce congestion [43, 44].
Through such applications, open data has not only enhanced policy effectiveness but
also fostered civic engagement and economic development.

Who are the data stakeholders?: In Figure 1.1, we illustrate the different types of
stakeholders and their roles in the context of privacy-preserving data visualization in
open datasets. The stakeholders with the highest responsibility in this ecosystem are
the data owners, who collect and have proprietary rights over the collected data, and
the data custodians, who have the responsibility of enforcing policies and safeguarding
the privacy of the data. Cambridge Analytica’s much-debated and questionable use
of Facebook data [45] demonstrates how privacy preservation responsibilities can be
misused. Data subjects are the individuals (e.g., people on Facebook) who provide
implicit or explicit consent to different agencies for collecting their personal data.
They need to be cognizant of the risks of sharing personal data and understand the
privacy policies of companies, a task that is often complex and inconvenient. In fact,
recent studies have demonstrated the lack of effectiveness of privacy policies of online
companies [46], and even worse, the deliberate use of dark patterns for subverting
policy implementations [47]. Data consumers are analysts or the general public with
appropriate levels of access to sanitized data who want to derive insights without
violating privacy. In many cases, data subjects themselves are consumers (e.g.,

patients mining electronic health records and people trying to understand trends
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Stakeholder

Data owner
L ¥
Tg?

Data subject

Data
custodian

° o
g
1N

Data
consumer

Attacker

Role in the data ecosystem

An entity which owns data about people or

individuals whose data is captured.
Examples: hospitals, social
media companies, social media users

Individuals whose data are represented in

databases or are collected by applications.

Examples: patients, common public

An entity with credentials for accessing a
private database or a 3rd party entrusted
with data analysis.

Examples: Cambridge Analytica

Any person who is the intended audience
for shared data or analysis.

Examples: data analysts, scientists, policy
makers, and the public

Anyone with the goal of breaching privacy
and knowing about people.

Examples: any attacker with or without
background knowledge about the
collection

Stake for privacy

» Wants to understand risks of releasing

data for public consumption

» Implement privacy legislation in the form

of policies

+ Decide whether or not trust an agency
for collecting their data

+ Understand implications of privacy
policies

» Have access to the original or a limited
version of the data

+ Implement privacy legislation in the form
of policies

+ Access anonymized data

+ Derive value from data without getting
to know sensitive information

+ Link publicly and privately available
information with the intent of privacy
breach

+ May or may not have background
knowledge about individuals in a
database

Figure 1.1 Different stakeholders in the open data ecosystem from a
privacy perspective: Data owners and custodians need to preserve and protect
the privacy of data subjects (i.e., individuals represented in a dataset) from insider
or outside attackers. Privacy-preserving visualization is used by data owners or
custodians for understanding privacy-utility trade-offs and is also used by data
subjects, who want to understand privacy policies, and data consumers, who want
to derive value from anonymized data.
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in survey data). Attackers are people or enterprises with malicious intent constantly
attempting to breach private databases or attack privacy-preservation mechanisms
duly enforced in publicly available data. They can try to re-identify anonymized
records by linking multiple open datasets.

Re-identification via linking: When releasing data, merely suppressing personally
identifiable information (PII), like name, social security number, email address, etc.,
is necessary yet not sufficient. Quasi-identifiers [48], like age, gender, zip code,
etc., can be exploited by attackers to breach privacy by linking attributes from
publicly available data sources (e.g., voter registration data) and privately accessible
information (e.g., hospital data or web access data). This is popularly known as
the data linking problem [49], and various data anonymization methods [50] like
generalization, suppression, perturbation, clustering, etc., are used to tackle this
problem. These methods typically produce an anonymized static data table, a
modified data mining algorithm, or an anonymized visualization. Most of these
methods constitute the non-interactive setting of privacy-preservation, where, once
released, the data owner does not have any control over the data or the mining results,
and the drawbacks of such a “release-and-forget” model [51] have been questioned by
recent studies. Next, we will discuss the anonymization methods followed by the
implications of this release-and-forget model.

Anonymization methods: One of the most widely used anonymization methods is
the k-anonymity model. It states that a dataset is k-anonymous if the information
for each record in the dataset cannot be distinguished from at least k — 1 other
records [52, 53]. For example, if & = 3, then a k-anonymized dataset will have
at least 3 similar combinations for each record of potentially identifying variables.
But k-anonymity does not provide a guarantee against attackers having background

knowledge or homogeneous attacks.
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Company Position  Nationality Zip Age Disease Company Position Nationality Zip Age  Disease Company Position Nationality Zip Age  Disease
Alpha Director ~ Japanese 10001 32 Galactosemia | * 2 = 100%* <40  Galactosemia | * e e 1000* <50  Galactosemia
Beta Manager  Indian 11049 53 Cancer * * * 100** <40  Galactosemia | * * * 1000* <50  Fatty Liver
Gamma  Associate American 10011 38 Galactosemia | * * * 100** <40  Galactosemia | * £ £ 1000% <50  Hepatitis B
Beta Manager  Russian 10004 43 Fatty Liver * * * 100%* <40  Galactosemia | * * * 1000* <50  Galactosemia
Alpha  Manager Japanese 10014 48 HepatitisB | * * * 110%% >=50 Galactosemia | * * * 1104% >=50 Hepatitis B
Delta Consultan Indian 10017 34 Galactosemia | * * * 110%* >=50 Cancer * * * 1104*  >=50 Galactosemia
Gamma  Associate American 11042 57 Hepatitis B * * * 110** >=50 Hepatitis B & £ £ 1104* >=50 Fatty Liver
Delta Manager  American 10007 42 Hepatitis B * # * 110%* >=50 Fatty Liver # * * 1104* >=50 Cancer
Gamma  Director  Japanese 11043 51 Galactosemia | * o 2 100%%* 4% Hepatitis B o o o 1001* <50  Galactosemia
Beta Manager  Russian 10009 35 Galactosemia | * * * 100%* 4% Fatty Liver * * * 1001*% <50  Hepatitis B
Delta Associate Indian 10019 42 Fatty Liver # * * 100%* 4% Fatty Liver * * * 1001* <50  Galactosemia
Gamma  Manager Japanese 11047 63 Fatty Liver # * * 100%# 4% Hepatitis B * * * 1001* <50  Fatty Liver
Table 1: Original dataset Table 2: k-anonymous dataset (k=4) Table 3: I-diverse dataset (1=3)

Figure 1.2 Examples of data anonymization based on the k-anonymity
and [-diversity metrics: k-anonymity ensures sufficient group size (here k =4) so
that an individual cannot be distinguished within that group and [-diversity ensures
sufficient diversity in the values of an attribute (here, 1=3), so that the exact values
of a sensitive attribute cannot be detected from this dataset.

Let us refer to a dataset as shown in Figure 1.2. Figure 1.2 (Table 1) represents
a dataset from clinical records, and Figure 1.2 (Table 2) is its 4-anonymized version.
Suppose we know that John is an American associate of age 38 living in the zip code
10011, then we can easily decipher from Figure 1.2 (Table 2) that he has Galactosemia.
This is the problem of homogeneous attacks. Again, suppose we know that Kabir is
a 42-year-old Indian associate who lives in zip code 10019 and works for the company
Delta. In that case, we can easily say he has either Hepatitis B or Fatty Liver. But
if we have background knowledge (e.g., associates of the company Delta have been
immunized against Hepatitis B), we can infer that Kabir has Fatty Liver. Thus, these
types of attacks cannot be prevented even if the dataset is k-anonymized.

This problem is addressed by another anonymization method, the [-diversity
model [54], which guarantees sufficient diversity in the value of attributes. The data
from Figure 1.2 (Table 1) can be represented in a 3-diverse way in Figure 1.2 (Table
3). Here, each block of four records has a minimum of three varieties of the disease
each. Now even if we know that John is an American associate of age 38 living in the
zip code 10011, we can only decipher that he has either Galactosemia, Fatty Liver or
Hepatitis B. Also, if we know that Kabir is a 42-year-old Indian associate who lives

in zip code 10019 and works for the company Delta, and we have the background
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knowledge that the associates of the company Delta have been immunized against
Hepatitis B, we cannot tell with a guarantee that he has Galactosemia or Fatty Liver.
Hence, both the problems of k-anonymity can be avoided through [-diversity.

On the other hand, [-diversity has its own limitations. [-diversity may be
difficult and unnecessary to achieve. For example, let us assume our data in Figure 1.2
(Table 1) contains only one sensitive attribute, i.e., whether the person has a disease
or not (Yes/No), and has around 100, 000 records. 98% of them have a disease (Yes),
and only 2% of them do not have any disease (No). In order to have a 2-diverse table,
there can be, at most, 2000 equivalence classes. Moreover, [-diversity is insufficient to
prevent attribute disclosure. In our previous example, suppose an equivalence class
has 49 negative records and one positive record. This implies that any individual in
this class will have a 98% possibility of not having a disease instead of the overall 2%
in the whole dataset. This is called a skewness attack. Moreover, [-diversity is also
not immune to similarity attacks. For example, in Figure 1.2 (Table 3), if someone
belongs to the last equivalence class and knows that Galactosemia, Hepatitis B, and
Fatty Liver are diseases related to the liver, then we can easily decipher that any
individual belonging to that equivalence class has liver disease.

The above scenarios can be alleviated using the t-closeness [55], which measures
the distance between the distribution of a sensitive attribute in an equivalence class
and the distribution of the attribute in the whole table and guarantees that the
distance is at most ¢. An even more robust and popular anonymization concept is
that of differential privacy [56, 57]. Differential privacy guarantees the following:
a) anyone analyzing the results of a differentially private analysis will make the
same inference about an individual’s private information, irrespective of the fact
whether the individual’s private data was used in the analysis or not [58] and b)
privacy protection against a gamut of privacy attacks, including linkage attacks,

reconstruction attacks, and differencing attacks [56]. But protecting the data subjects’
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privacy can impact a dataset’s utility to some extent. The choice between the privacy
and utility preservation of datasets can be made by a human expert, and visual aids
can help the expert make this decision.

Net load forecasting: Net load, also known as residual load, refers to the difference
between total electricity demand and the electricity generated by variable renewable
energy sources, primarily wind and solar power [59]. Forecasting net load is vital
for grid operators and utilities to maintain a stable and reliable power supply, as it
helps them anticipate the amount of conventional generation needed to meet demand.
This forecasting process involves predicting both the total electricity demand and the
expected renewable energy generation, then calculating the difference between these
two values. Accurate net load forecasting is essential for efficient grid management,
as it enables operators to optimize the dispatch of conventional power plants, manage
energy storage systems, and implement demand response programs effectively. The
importance of net load forecasting has grown significantly in recent years due to the
increasing penetration of renewable energy sources in power systems worldwide. This
trend also presents challenges for forecasters, particularly with the rise of behind-
the-meter solar installations, which can introduce uncertainties in both demand
and generation predictions. High levels of distributed solar generation can lead to
more volatile net load profiles and create phenomena like the “duck curve,” where
rapid ramps in net load occur during sunset hours, necessitating more sophisticated
forecasting techniques and flexible grid operations [60]. Artificial Intelligence (AI)
is playing a crucial role in improving net load forecasting by leveraging advanced
techniques such as Long Short-Term Memory (LSTM) networks, which can capture
complex temporal patterns and spatial interactions in the distribution grid [61].
Human Factors and the role of visualization: As apparent from the above
discussion, several human factors are involved with all stages of privacy-preservation

of data, be it the choice of anonymization methods, evaluation of trade-offs, or the
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Figure 1.3 Data flow and roles of stakeholders: Privacy-preserving data
visualization involves visual representation of outcomes of different anonymization
models, addition of visual uncertainty as defense mechanism, evaluation of
disclosure risks, and visualization of policy implications. The abiding goal in all of
these cases is to guarantee a minimum level of privacy that can protect the data
with respect to attack scenarios.

various attack scenarios, often triggered by attackers’ background knowledge [62, 63].
This is illustrated in the privacy-preserving data visualization pipeline shown in
Figure 1.3. Data owners often need to control access to proprietary data and
protect it from even insiders in a company, and therefore visualization can help them
understand the risks [20, 21] and more transparently configure appropriate levels of
anonymization and data accessibility. Disclosure risk minimization [64, 65] is a key
goal for both data owners and data custodians, particularly when outside adversaries
can mine the released data or the results of the analysis process by using their
background knowledge. Visualization can help understand the privacy guarantees and
risk-utility trade-offs. For data consumers, a better understanding of mental models
of personal privacy [66, 67] can let us know what kind of human inputs and interaction
mechanisms should be considered for developing visualization interfaces. In the case
of net load forecasting, the grid operators, analysts, and policymakers essentially
act as data consumers, interpreting complex forecasting models and making critical

decisions based on their outputs. In our survey (Chapter 2), we aim to understand
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whether state of the art in privacy-preserving data visualization addresses these known

unknowns and, if so, what are the emerging trends, patterns, and gaps thereof.
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CHAPTER 2

LITERATURE REVIEW

Privacy preservation has become an antithesis to the idea of a digital data-driven
era. Be it the smart devices that we use, the online services we access, or even
the places we visit, data about our activities, identity, habits, and preferences are
being collected at an unprecedented rate. Privacy, a fundamental human right, is
often considered collateral damage in a bid to personalize and monetize commercial
services offered to people. Several researchers have recently posited that the data
landscape is confronted with a privacy crisis [68, 69, 70|, and to fix it, an immediate
collaborative effort among multiple stakeholders in the data ecosystem is needed.
Who are these stakeholders? In the related research areas of privacy-preserving
data publishing [71] and mining [72], there has been extensive discussion on the
role of different stakeholders. The stakeholders with the highest responsibility
in this ecosystem are the data owners, who collect and have proprietary rights
over the collected data, and the data custodians, who have the responsibility of
enforcing policies and safeguarding the privacy of the data. Cambridge Analytica’s
much-debated and questionable use of Facebook data [45] demonstrate how privacy
preservation responsibilities can be misused. Data subjects are the individuals (e.g.,
people on Facebook) who provide implicit or explicit consent to different agencies for
collecting their personal data. They need to be cognizant of the risks of sharing
personal data and understand the privacy policies of companies, a task that is
often complex and inconvenient. In fact, recent studies have demonstrated the lack
of effectiveness of privacy policies of online companies [46], and even worse, the
deliberate use of dark patterns for subverting policy implementations [47]. Data

consumers are analysts or the general public with appropriate levels of access to
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sanitized data who want to derive insights without violating privacy. In many
cases, data subjects themselves are consumers (e.g., patients mining electronic
health records, people trying to understand trends in survey data). Attackers are
people or enterprises with malicious intent, who are always attempting to breach
private databases or attack privacy-preservation mechanisms duly enforced in openly
available data. While regulations such as HIPAA[73], or more recently, GDPR [74]
aim to protect data subjects against such malicious attacks by enforcing strict
regulations for releasing data, recent studies have demonstrated how even heavily
anonymized datasets run the risk of privacy breach, where demographic attributes
in openly available data can be used to re-identify about 99% of Americans [51].
The latter case study is a telling commentary on how static privacy-preservation
mechanisms (where anonymized data is released without any subsequent checks of
risks) are inadequate in the face of evolving threats and attack scenarios.

Given this rather bleak picture of privacy in the real world, our attempt in this
state-of-the-art report is to: a) investigate if and how visualization can empower data
owners, subjects, custodians, and consumers to have a transparent understanding
of privacy implications and b) provide guidance on how visualization can play a
significant role towards addressing the socio-technical dimensions of data privacy. In
the process, we analyze how a futuristic research agenda can adapt to the needs of
the different stakeholders. As illustrated earlier, people’s roles define what kind of
stake or incentives they have for preserving or breaching data privacy. For example,
a biologist who runs a research lab or a company that collects data about people’s
social media interests, would want to get guidance on the risks of sharing data with a
broader group of people. A data custodian, like Cambridge Analytica, needs to have
checks and balances in place to ensure people’s identities are not revealed due to the
use of demographic data. Data consumers, like a social scientist trying to understand

the correlation between demographics and economic indicators of a region, need to
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derive value out of anonymized data and overcome the potential loss of value due
to suppression or omission of sensitive information. With the ubiquitous availability
of smartphones, data subjects are often at the receiving end of privacy violation as
personal data is being collected at an unprecedented rate, often with dubious policies
and purposes. In rare cases like the currently unfolding COVID-19 pandemic, such
data collection becomes a societal need for contact tracing [75], which also brings
privacy risks in its wake and solutions [76] need to be developed where public health
and individual privacy are not considered to be trade-offs in policy implementations.

Visualization can play a critical role in all these scenarios, as evidenced by
the state-of-the-art literature on privacy-preserving data visualization. This field
of research has imbibed and extended concepts from the privacy-preserving data
publishing [77] and mining [78] communities for developing visualization-specific
solutions for anonymization, controlled access, and utility and risk analysis of released
datasets. Our goal in this survey is to take a problem and task-driven approach
towards organizing the existing research. This approach is motivated by the fact
that privacy is as much a computational challenge as it is a challenge related
to consideration of human factors across domains like healthcare [79] and social
networks [80, 81].

To study these factors, we introspect about the privacy problem and the related
goals of stakeholders and then map those back to the anonymization methods and
visualization techniques. Our survey makes three contributions: i) Task-driven
understanding of the privacy preservation goals with regards to different application
scenarios and multiple stakeholders in the data ecosystem, like the data owners,
data custodians, and data consumers, ii) Comparison of tasks and techniques for
privacy-preserving data visualization and a critique of the design space, and the

iii) Analysis of gaps and emerging research opportunities by establishing the context of

22



privacy-preservation related challenges in the realms of both privacy-related research
gaps and emerging research areas in visualization and visual analytics.

After discovering the vulnerabilities in the open data ecosystem, we decided
to develop a workflow that helps inspect more such vulnerabilities and disclosures
and thus helps to preserve the privacy of the data subjects mentioned in the open
datasets. As discussed above, visual analytic interventions can help emulate this
workflow through a web-based interface. Thus, in order to understand the application
of privacy preservation in data visualizations, we have conducted a survey of the
literature of this domain and classified it according to the anonymization methods
used by them, along with the visualization tasks we identified and the associated
techniques to implement them. We will first discuss the survey methodology and the
classification scheme in detail, followed by the task and techniques and our analysis

of the gaps and future opportunities in this domain.

2.1 Survey Methodology And Classification Scheme
In this section, we first describe our survey methodology. Specifically, we discuss
the definition of privacy that is relevant for visualization and describe our analysis

workflow.

2.1.1 Definition and scope for literature search

The field of privacy-preserving data visualization lacks a thorough characterization
of human-specific needs and goals. Depending on whether the target user is a data
owner, a data subject, or a data consumer, the uses of visualization are likely to
be vastly different (Figure 1.3). We look at the relevance of visualization in privacy
from the dual lens of input and output privacy [82, 83, 72], where input privacy
involves the transformation of a dataset into its privacy-preserving form through
anonymization methods, and output privacy involves judgment about the analysis

outcomes of the privacy-preserving dataset: whether the analysis or the visualization
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is also privacy-preserving, i.e., how difficult it is for an attacker to infer sensitive
knowledge by observing the patterns.

Since privacy-preserving data visualization is a relatively newer research area
as compared to other areas of visualization research, we wanted to collect papers
that reflect both the theoretical and practical aspects of visualization usage in the
context of privacy. To that end, we followed a three-stage process for paper collection.
In the first stage, we performed a broad search on IEEE and ACM digital libraries
and Google Scholar with various combinations of keywords such as “privacy and
visualization”, “privacy-preserving visualization”, “privacy and visual”, “privacy and
human factors”, etc. This phase gave us a data-driven idea of the domains in which
we were most likely to find privacy-preservation techniques and strategies involving
data visualization. The healthcare domain was the most frequent one we encountered
through our initial exploration, with the social science domain being a distant second.

In the second stage, we performed a deeper search into top-ranked domain-
specific journals from healthcare, such as the Journal of Biomedical Research, and
social science, such as the Social Science Journal. We collected more than a hundred
papers from them by repeating the search terms “privacy and visualization”. We
also looked into the Google Scholar citations of these papers. Our inclusion criterion
was to consider any paper that proposes a visualization method or technique as part
of their privacy-preservation theory and applications. Most social science papers did
not satisfy this criterion and had to be excluded from our collection. For papers
published in visualization-specific venues, we collected research papers related to
privacy-preserving data visualization by focusing our search on leading visualization
publications from the past twenty years. These include proceedings of the Information
Visualization Symposium/Conference and journals such as IEEE Transactions of
Visualization and Computer Graphics (TVCG), Computer Graphics Forum, ACM
CHI Conference, and IEEE PacificVis Symposium.
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In the third stage of our paper search process, we considered publication venues
such as ACM CHI and ACM SOUPS, from where we collected several papers related
to visualization and privacy that were specific to the security domain or were domain
agnostic. We applied the same inclusion criterion for these papers.

Before applying our inclusion criterion, our corpus comprised about 400 papers.
We carefully checked our corpus even after applying the inclusion criterion and filtered
out any paper that only reflected on a potential use of visualization or a potential
breach of privacy in a dataset, without discussing any specific method or technique.
We finally ended up with 38 papers with contributions in the visualization domain
and the specific application domain (e.g., healthcare, social science, and security and
privacy). The latter collection helped us take a user-centered approach which was

our goal from the onset.

2.1.2 Classification scheme

We derived a classification scheme (Figure 2.1) to characterize the different research
contributions in the literature. We look at the problem of privacy preservation
from an end user’s perspective and focus on whether the techniques, methods, or
applications are designed for a data owner, data consumer, or data subject. Due
to the inherent similarity of the roles of data owners and data custodians from the
perspective of privacy preservation and also in the context of the work we surveyed,
we treat them as one group of users. Data owners, who hold proprietary rights for
the collected data (e.g., social media companies or hospitals), aim to anonymize the
data, implement access control, and implement accountability in order to increase the
levels of privacy preservation. On the other hand, data consumers (e.g., analysts using
social media data, scientists using health-care data for research, laypeople using data
from fitness trackers) are generally provided with an anonymized version of the data

or the visualization for deriving value out of it. In our collection, we found there is
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an even split between the techniques that consider these groups as their target users.
Data owners must be cognizant of the risks owing to identity disclosure (i.e., data
consumers knowing exactly who the individuals are, from the data points representing
them) and attribute disclosure (i.e., data consumers knowing the value of different
quasi-identifiers or sensitive attributes) risk scenarios. They also have to understand
what kind of attack scenarios a released data or a visualization may be subjected
to based on the availability of other data sources or the background knowledge of
the attacker. Visualization systems themselves can be subject to attack, and thereby
the privacy guarantees might be compromised [84]. When a person with a data
owner’s role in a company needs to share data internally, they also have to implement
appropriate access control mechanisms: people with only certain roles and privileges
can access de-anonymized versions of the data. Data consumers must overcome the
barriers of anonymization to derive value from the data. When a consumer is subject
to data collection (e.g., whenever we use services on our smartphones), they also
need to be cognizant of the disclosure risks associated with sharing their information.
One of the most critical challenges in information privacy is the trade-off between
privacy and the value or utility of the data. We observed that while there is a
systematic approach toward defining what privacy means and how anonymization
methods can help achieve different levels of privacy, in comparison, there is a lack of
consensus about how the utility of anonymized data or a visualization derived from
it can be qualified or quantified. The trade-off between privacy and utility affects
both data owners and consumers. Based on the choice of anonymization methods
like k-anonymity, (-diversity, and ¢-closeness (as discussed in Chapter 1), the degree
of reduced utility of the data will vary.

The privacy problems faced by data owners [85, 86, 87, 88] can be described as

follows based on our collection:
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e How to choose anonymization methods that minimize disclosure risks and
maximize the utility of the shared data?

e How to develop a privacy-preserving interface or visualization which will
help users leverage interactive capabilities without leaking information about
sensitive attributes?

e What are the vulnerabilities faced during the data flow between organizations
that may result in policy non-compliance?

e How to share data between different entities (sensors, people, etc.) without
privacy leakage?

e What are the degrees of re-identification risks, based on external information
or users’ background knowledge, once the data or the visualization is publicly
accessible?

e Can attack scenarios be predicted, and accordingly, how can defense
mechanisms be integrated within an anonymized visualization?

While some of the above problems also affect data consumers, we can describe
the additional privacy problems faced by data subjects and consumers based on the

literature [89, 90, 91, 81, 92, 93, 94] as follows:

e How to assess one’s privacy on Online Social Networks (OSN)?

e What are the permissions requested by mobile applications, and how is the
shared information used?

e Does a website sell or misuse private information by stating them explicitly in
the privacy policies? Can data consumers be better aware of potential dark
patterns [47]7

e How can data owners and consumers communicate better through more
interpretable privacy policies?

We use this categorization and problem definition to describe the visualization-
specific tasks, solutions, and challenges addressed in the literature, which we describe
in detail in the following sub-sections. This scheme has been illustrated with the

examples from our corpus in Figure 2.1.
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Figure 2.1 Classification Scheme for describing the literature on
privacy-preserving data visualization: This scheme is based on the target users,
privacy problems, visualization tasks intended to solve those problems, and the
anonymization method used in conjunction with different visualization techniques.
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Data Uncertainty based anonymization: Sankey diagram used for transforming the visualization on the left
a to a privacy-preserving one

Visual Uncertainty based anonymization: Clustered parallel coordinates on the right ensures a minimum level of privacy
b by using a combination of screen space metrics and anonymization methods

Visual Uncertainty based anonymization: A volume rendering pipeline which uses obfuscation methods
and customized transfer functions for generating a final image which guarantees a minimal level of privacy

Figure 2.2 Illustrating anonymization methods: Based on data uncertainty
and visual uncertainty.
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Attack Scenarios
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Figure 2.3 Illustrating how risks can be evaluated: This paper describes how

risks can be evaluated in a privacy-preserving data visualization based on a
systematic understanding of the different attack scenarios [1].
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2.2 Anonymization Methods

The anonymization methods used in the context of visualization fall broadly into
two categories, which are methods based on: i) data uncertainty and ii) visual
uncertainty (Figure 2.2). Introducing uncertainty in the data space involves use
the of the anonymization methods (Chapter 1) for making sure either a certain
number of records are indistinguishable, and the distribution of attributes is such
that sensitive information cannot be derived from them. Besides the traditional
metrics of k-anonymity, [-diversity, t-closeness, and differential privacy, we also find
examples in the literature where novel metrics are proposed. For example, Okansen
et al., using a dataset of users’ cycling work-outs [95], focus on three methods, namely
privacy-preserving heat map with user diversity (ppDIV), privacy-preserving kernel
density estimation (ppKDE) and privacy-preserving user count calculation (ppUCC).
Their goal is to prevent the disclosure of user identity. Data-based clustering
algorithms [96, 97, 98] and those based on differential privacy [99] are also used
for preventing identity and attribute disclosures.

In visualization, at least some information about the data is typically available,
like labels and value range on axes, and the minimum and maximum boundaries
of each cluster. The notion of a totally ‘blind’ attack, without any knowledge
about the data, may not be applicable to privacy-preserving visualization. To guard
against this kind of inference based, researchers had proposed the idea of developing
anonymization metrics in the screen-space, as opposed to the data space, based on
visual uncertainty. Visual uncertainty [100] entails uncertainty owing to the visual
mapping between data points and pixel coordinates. For example, a clustered scatter
plot or a parallel coordinates (Figure 2.2b) that guarantees a minimum level of privacy,
can be developed by combining pixel binning with the conventional anonymization

methods like k-anonymity or [-diversity [101, 102].
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Visual uncertainty has important connotations for how the intended privacy
level of a visualization can be breached via different attack scenarios. As shown
in Figure 2.3, the cluster ranges naturally hide record locations within a cluster
and cluster overlaps can also hide where a record within a cluster ends up, across
the axes, in a parallel coordinates plot. An attack usually consists of a series
of progressive actions, building on incrementally acquired knowledge. An attacker
may start with little knowledge, and by making observations from the information
conveyed in visualization, such as a clustered parallel coordinates or a scatter plot,
the attacker may try to identify a particular record within that cluster.

From that, the attacker gradually identifies more information about the record
by moving from one axis to another or works out information about other records
in the same cluster, as shown in the illustrations involving cluster overlaps cluster
splits, and cluster range in Figure 2.3. Regardless of how complex an attack is, it
can be decomposed into a set of basic attacking actions and disclosure risks. Causes
and effects of visual uncertainty (in the form of cluster overlaps, splits and ranges)
can protect against disclosure risks and computing the amount of uncertainty [101,
102] and can also provide an estimate to data owners and custodians of the degree
of risk involved with different visualization configurations [1]. Other examples of
visual uncertainty involve the use of record masking [85] or obfuscation for volume

rendering [103].

2.3 Visualization Tasks and Techniques
Visualization has a key role to play in all aspects of privacy in the data ecosystem
for both data owners and data consumers. With our dual focus on visualization-
specific contributions and application-specific research involving privacy-preserving
data visualization, we are able to cover a breadth of work that can inform both

visualization researchers and practitioners. In this section, we describe the surveyed
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papers based on the following categories (Figure 2.1): i) the high-level visualization
tasks relevant to privacy-preservation, and ii) visualization techniques used to address
those tasks. In this section, we describe the privacy-preserving data visualization
tasks and techniques that we collected from our survey. Five high-level visualization
tasks emerged in our collection, and we describe them along with the corresponding

visualization techniques.

2.3.1 Hide data

Hiding data was the most common in our collection, with a coverage of more
than 50% of the papers we surveyed. This task was employed for both spatial
data and non-spatial data. In rare cases, we find the use of machine learning
models for minimizing the exposure of sensitive information using a cloud-based
architecture [104]. For scientific data, Chou et al. [103] proposed an obfuscation
technique for scientific visualizations in order to maintain the privacy of the user.
This block-based volume data transformation algorithm obfuscates volume data and
delegates the task of rendering the volume data to a remote server, thus preserving
the privacy of the scientific visualization. The images show the difference between
normal rendering and the proposed privacy-aware volume rendering. This paper also
demonstrated the development of a transfer function adjustment so that the transfer
to the remote server for volume rendering is also privacy preserving.

For spatial data, the primary goal is to hide the exact coordinates of people’s
location [105]. To that end, Andrienko [106] presented a visual analytics model which
can analyze the episodic digital traces/locations of a person over a long period of time
and detect places of significant interest like home, work, social activity place etc. But
this model also preserves the privacy of the person being analyzed. Geographical
maps are used to represent neighborhoods instead of individual data points. It also

uses a semantic map to display information about different places derived from the
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data of a certain city. Two-dimensional time histograms are also used to analyze
the usage of different location clusters in a certain city over a certain period of time.
Ljubic et al. [107] use geographical heatmaps to present the distribution of influenza
in a certain area. This helps in finding the affected area in a certain geographical
region, which may be helpful to healthcare officials. A privacy leakage in these
geographical heatmaps may allow the identification of certain patients, leading to
identity disclosure.

For temporal data, visualization is often used to encode the outcomes of
an anonymization method (e.g., k-anonymity, [-diversity, t-closeness, differential
privacy), leveraging clustering in the data space [97, 98, 108] for visualizing event
sequences.

For non-spatial data, visual uncertainty is added to a conventional technique
like scatter plot or parallel coordinates as an additional defense mechanism [101, 109,
102]. Examples of visual uncertainty include loss of precision of a data point, where
an attacker is unable to tell apart lines in parallel coordinates or dots in a scatter
plot due to visual confusion, or the degree of granularity of records in a cluster,
where an attacker is not able to exactly point to record locations within a cluster.
Understandably, visual uncertainty can reduce the risks of both identity and attribute

disclosure by manipulating clustering algorithm parameters.

2.3.2 Evaluate risk

Fuvaluating risk was the second most common task in our collection, with a coverage of
about 30% of the papers we surveyed, mostly focused on the data owner. Disclosure
risks are affected by how much an adversary knows about the data. Two kinds of
re-identification scenarios are possible [78]: a) prosecutor re-identification scenario,
where an intruder (e.g., a prosecutor) knows that a particular individual (e.g., a

defendant) exists in an anonymized database and b) the journalist re-identification
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scenario, where an adversary tries to randomly re-identify an individual based
on the distribution of certain quasi-identifiers, demographic attributes, or even
sensitive attributes. Researchers have recently proposed visual uncertainty-based
risk quantification. Researchers in application domains like healthcare [50] discuss
how privacy-preserving data sharing risks can be mitigated in a non-interactive
privacy scenario, by restricting the queries that can be used for exploring the data.
These concepts can also be applied in the case of interactive visualization, where
different visualization configurations are evaluated carefully for risk factors before
making them publicly accessible. Data owners thus need to rigorously identify risks
before releasing the data. Kao et al. [87] present a novel visualization interface
named ODD visualizer which will help in open data de-identification, i.e., if there
is any privacy leakage in the dataset. It uses heat maps to display k-anonymity and
[-diversity distributions. This is similar to the approaches of Castellani et al. [39], who
propose a visualization-based data profiler for understanding potential vulnerabilities
in openly available city data, and Deeb-Swihart et al., where they evaluate strategies
to help law enforcement officials combat human trafficking while ensuring privacy
protection [110]. Recently, Dasgupta et al. [1] proposed a suite of metrics using which
data owners can estimate the probability of disclosure risks of different configurations
of clustered scatter plots and parallel coordinates. The risk quantification model
addresses both re-identification scenarios and quantifies the number of guesses an
attacker had to make before knowing the precise value of an attribute or the location
of a record within a cluster (Figure 2.3). Assessing these risks can help data owners
decide on an appropriate level of privacy they are comfortable with, before releasing
the visualization for public access. Another example of such a task includes the
analysis of privacy preservation with human trajectory data [111]. Wang et al.
conducted experiments to understand how a user can analyze movement behaviors

using trajectories and how they can locate specific positions on these trajectories.
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They observed that trajectory analysis is more accurate and even less time-consuming
while using Positions of Interest (POI) than road networks or histogram but locating
positions on a trajectory is almost the same in POI and Road network methods.
This paper also comments that the capability of these features in trajectory analysis
and privacy exposure may differ for various trajectories, based on the area covered.
Thus the combination of multiple features may generate new knowledge, but it also
increases privacy risk.

In one of the few examples focusing on evaluating privacy risks for a data
subject, Takano et al. proposed a visualization system [112] for making users
aware of how different entities for website tracking can potentially compromise user
identity without their knowledge. In another such example, Muchagata et al. [113]
presented a text-based interface in a mobile application that will help patients and
healthcare professionals to monitor health data. The most important feature of
this visualization, named Adaptive Graphical Visualization Interface (AGVI), is the
interface is user-adaptive, i.e., it changes according to the user’s needs. This paper
observes that adaptive visualization techniques can influence the users’ perspective
on the security and privacy of a mobile application, but the roles of the user
(patient or healthcare professional) and their goals (searching for medications or
analyzing patients’ tests) can influence this perspective. This is the only example
where we found that an interface is tested with respect to multiple roles, and
design considerations are presented from both a data subject and a data consumer’s

perspective.

2.3.3 Understand policy
Understanding Policy was the third most common task in our collection, with a
coverage of about 25% of the papers we surveyed targeting both data subjects

and data owners as users. Bahrini et al. [92] discuss how a mobile application
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can help users to understand which user information is accessible by the granted
permissions. This interactive visualization will help the users make an informed
decision about whether to install a certain application or not. The authors claim
that the results of their evaluation state that by promoting user awareness regarding
permissions required by mobile applications (Android), users pay more attention to
these permissions. The paper also tested system usability using error bars for different
versions of the application and concluded that the version with a more detailed
description/flow of permissions has greater usability. Dhotre et al. [94] implemented a
method to perform a semi-automatic analysis of the privacy policies of certain websites
and generate visualization in order to help the user understand the policies better.
This visualization interface, consisting of pie charts, helps the user understand the use
of different Personally Identifiable Information (PII) by the website, according to their
privacy policies. The interface also summarizes certain sections, like the use of cookies
and information sharing policies, and help the users to understand them better. The
Privacy Policy Elucidator Tool (PPET) collects the privacy policies from different
websites, parses them, classifies them using machine learning techniques like Naive
Bayes classifier, and uses the extracted paragraph and summary for the visualization.
It also evaluates the trustworthiness of the website and displays the same through a
donut visualization. Ghazinour et al. [114] present a visualization model which will
help the data owners understand the privacy policy of a website and help the policy
officers to better understand the designed policies. The Privacy Policy Visualization
Model (PPVM) involves the use of relationship diagrams to help in the following tasks:
understand privacy policies of these websites when using the name and email address
of individuals to send notifications regarding new services, not collecting data of
anyone under a certain age limit, disclose user information pursuant to lawful requests
etc. The model suggests highlighting the purpose(P), granularity(G), visibility(V),

retention(R), and constraint(C) of the privacy policies in this relationship diagrams.
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Becker et al. [93] reflects whether using visualizations to communicate privacy and
security measures have positive effects on trust. Infographics are used to depict certain
privacy concepts like SSL encryption and AES encryption and study the improvement
on privacy and trust. The study concluded that though these descriptive images have
a positive effect on the trust in the provider, there was no significant improvement

regarding data security and privacy in comparison to the text-based privacy policy.

2.3.4 Evaluate trade-offs

The task of evaluating trade-offs, performed mainly by data owners or custodians,
had a coverage of about 18% of the papers we surveyed. Wang et al. [115] developed a
combination of tree-based and matrix-based visualization techniques for helping data
consumers dynamically understand the effect of privacy parameters on the difference
between the original data and the processed data.They propose the construction of a
Privacy Exposure Risk Tree for interactively controlling how hierarchical attributes
are organized and selecting parameter values of a privacy model based on differential
privacy. A matrix-based view is then used to observe the change in two-dimensional
distributions of different combinations of selected attributes. At the end of this
process, they can also export an anonymized dataset. Xiao et al. [88] presents a
visualization tool named VISEE which will help to maintain the balance between
high application utility and less privacy leakage in the case of sharing of sensor data.
Accelerometer data collected from different mobile devices have been used as an
example. The visualization focuses on representing the degree of mutual information
between different pairs of variables. Parallel coordinates, feature grid diagrams, and
ranking charts help select the appropriate combination of features and sampling rates,
thus making a good decision on the trade-off between utility and privacy. For data
subjects, Wang et al. proposed an interactive visualization tool for users who can

share their personality portraits by tuning the privacy settings, visualized in the form
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of linked bar charts [116]. Ragan et al. [85] presents an interactive interface where the
user starts with fully masked de-identified data and later clicks to open when more
information is required for making better decisions. This is a system that reduces
privacy risk through on-demand incremental information disclosure. Box plots have
been used to analyze the test results in different masking levels like full, moderate,

low, and masked.

2.3.5 Compare algorithms

The task of comparing algorithms had a coverage of about 18% of the papers we
surveyed, focused mainly on data owners to understand how different algorithms have
an effect on privacy or re-identification risks. A significant challenge in incorporating
multiple models is comparing the effectiveness of different anonymization schemes as
privacy requirements can drastically change across datasets and user backgrounds.
To address this problem, Wang et al. developed a tool called GraphProtector [117]
that guides users based on the transformation steps in a privacy-preservation pipeline.
Using interactive visualization in the form of a graph, users can manipulate sensitive
and non-sensitive nodes and their connections and observe the structural changes to
the graph that interferes with utility. Ultimately, they can make better decisions
about which algorithm is appropriate for their data and privacy goals.

Kung et al. [118] use Discriminant Component Analysis (DCA), a supervised
version of Principal Component Analysis (PCA) for the visualization because DCA
can support data of high compression (small dimensionality), and the recoverability
can be controlled. This paper has also compared the results of different clustering
methods using multidimensional projections using which users can compare and

effectiveness of this approach.
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2.4 Critical Reflection on the Design Space
The goal of a conventional visualization or visual analytics technique is to facilitate
the generation of insights from data. While the definition of insights itself has
been debated by several researchers [119, 120], there is no denying the fact that
visualization processes maximize the amount of information that can be encoded
in and decoded from a visual representation. This is in contrast to the goal of
any privacy-preserving data visualization technique, where the goal is to restrict
data consumers from accessing sensitive information or help data owners understand
the trade-offs and policies governing such restrictions. In this section, we aim
to study how this contrast is reflected in the design choices. To this end, we
refer to the literature on the ranking of channels [121, 122] and analyze the role
of high-accuracy channels (e.g., position) and low-accuracy channels (e.g., area)
for privacy preservation purposes. We include techniques from our collection and
augment that collection with techniques that use either class of these channels. We
first discuss a classification scheme (Figure 2.4) and organize our analysis around three
themes: i) transformation of high-accuracy channels, ii) vulnerability of low-accuracy
channels, and iii) the relative utility of these channels when a transformation is applied

for privacy-preservation purposes.

2.4.1 Classification scheme

Privacy-preserving data visualization techniques use a transformation of the channels
that would be otherwise used for visualizing the de-anonymized data. As part of our
classification scheme (Figure 2.4), we group the techniques based on the original
channel that is used for visualizing the raw data and for each of them, identify the

privacy-preserving channel.
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Paper Original Channel Visualization Technique Low-Level Task Vulnerability Privacy-Preserving Channel Madified Vis Task Risk Source

DK11 Parallel Coordinates Identify Disclosure- both Area Summarize Interaction
AAF16 Geographical Map Locate Identity disclosure Density Distribution Interaction
Wang2017 Scatterplot Identify Attribute disclosure Area Distribution Interaction
Kung2017 Position Multidimensional projection Identify Identity disclosure Containment Group Knowledge
Dasgld Pixel-based Detect trends  Attribute disclosure Color Detect trends Interaction
Wang2017 Scatterplot Distribution Attribute disclosure Area Distribution Knowledge
Mazzia2012 Multidimensional projection Group Identity disclosure Containment Same Knowledge
DMK14 Height Bar Chart Compare Attribute disclosure Same Compare Distribution
DMK14 Area Treemap Compare Attribute disclosure Same Compare Distribution
CY16 Volume rendering Detect shape  Attribute disclosure Same Detect shape Knowledge
Dasgld Shape Glyph Detect patterns Attribute disclosure Same Same Knowledge
Xiao2018 Scatterplot Distribution Attribute disclosure Same Same Distribution

Figure 2.4 Dissecting the design space of privacy-preserving visualization:
in terms of the transformation of the original channel (used for encoding the raw
data) to a privacy-preserving channel. In particular, we point to the vulnerability of
the high-accuracy channels like position and also highlight the counter-intuitive fact
that even low-accuracy channels like area and shape can be exploited by attackers.

We use the task taxonomy proposed by Brehmer and Munzner [123] to
distinguish between the high-level privacy-preserving task (i.e., why a task is
performed) and the low-level visualization task (i.e., how a task is performed).

The main reason for a privacy focused transformation (e.g., a scatter plot
transformed to a clustered scatter plot) is to prevent the original tasks from being
performed owing to their vulnerability. Therefore, we also look at the modified
visualization task, and introspect on the relative difference in utility between the
original and the anonymized visualization. Finally, we also reflect on what possible
risks could be associated with the anonymized visualization. Such risks can stem
from the interactivity of a visualization, where additional context, or description is

provided or from the background knowledge of an attacker.

2.4.2 Vulnerability of high-accuracy channels

In geographical maps and in multidimensional visualization techniques like scatter
plots and parallel coordinates, the position is the primary encoding channel.
Assuming that individuals are represented using these visualizations, a high-accuracy
channel like position can help identify individuals and thereby leading to a privacy
risk of identity disclosure. Privacy-preserving parallel coordinates and scatter plots

have been proposed by generalization through k-anonymity [101], where records
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are visualized as clusters. When the position visual variable provides the primary
encoding, then we can exploit the difference in resolution between the screen space
and data space to inherently lose information through binning, etc. This, when used as
a parameter for controlling a privacy-preserving algorithm, can produce visualizations
with both high privacy and utility. However, it has been shown that cluster-based
k-anonymous parallel coordinates and scatter plots have certain vulnerabilities from
record linkage and attribute linkage [102].

Vulnerability of position channel

Figure 2.5 Illustrating vulnerability: In a position-based encoding, where
clustering can help transform a position-based encoding to an area-based encoding
and protect against sensitive queries.

An example of such vulnerability is shown in Figure 2.5. In this case, the edges
of clusters represent real data points. If an attacker is aware about, say, the age of a
person, as shown in the figure, and the pixel coordinate of that data point coincides
with a cluster border, then the location of the record is revealed. On the other hand, if
the pixel coordinate is a non-edge point within a cluster, that provides higher privacy.
With respect to attribute linkage, one can geometrically derive the number of possible
cluster configurations given different values of & and use that for guessing the linkage
between adjacent attributes. Reordering and brushing can enable an attacker to

choose a different adjacency configuration of quasi-identifiers and browse through a
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subset of records. Dasgupta et al.[102] have proposed different screen-space metrics
that aim to constrain such interactions based on the privacy risks.

Transformation of the position channel to a density-based representation in
geographical maps [106] is also common, where users can gauge the distribution
instead of locating individuals. Such manipulation of pixels is also possible with
non-spatial pixel-based visualization techniques, where value of an attribute is
mapped to colors according to a chosen color scale [124]. But in the case of interactive
pixel-based visualization [125], each pixel can be an entry point to an individual’s data
point, and malicious users can use a number of educated guesses to know the value
of an attribute. Pixel-based representations can also become vulnerable when linked
with other contextualizing representations.

Other approaches towards the transformation of the position channel include
the use of containment metaphor in the case of multidimensional projections [118] and
converting raw scatter plot representation to a representation of distributions [115].
While such transformations guarantee a minimum level of privacy, they are also
vulnerable to interaction, especially drill-down operations, which should be adaptively

restricted based on the associated risks.

2.4.3 Vulnerability of low-accuracy channels
Low-accuracy channels like area, density, shape etc., which generally represent
aggregated data, can be intuitively thought of as being inherently privacy-preserving.
In this case, one is unable to observe the exact value of an attribute or locate a record
precisely. Yet, as demonstrated in earlier work [125], such an assumption is not valid
in many real-world use cases.

As shown in the bar chart (Figure 2.6), some patterns stand out, like the
correlation between the high re-admission rate and the number of emergency visits for

male and female African Americans aged 50 to 60. There is only one category with
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Vulnerability of low accuracy channels like area and glyph

Glyph about patient outcomes

Figure 2.6 Illustrating vulnerability in bar charts and glyphs: Despite
aggregation and use of low-accuracy channels, information can be recovered using
the data distribution or background knowledge.

non-zero frequency in re-admission greater than 30, and these are Caucasian males
aged 40 to 50. This implies that with knowledge of quasi-identifiers such as race and
age, deducing the diabetic condition would not be hard. Similarly, glyphs [126] can
also be thought of harmless from a privacy-preservation perspective, nonetheless, as
shown in the glyph in Figure 2.6, more information can be potentially determined
about the patients based on the background knowledge of the attacker. Glyphs
are popular visual representations in the healthcare domain because of the intuitive
nature of the representation. In contrast, such information, when integrated with
openly available attributes, patient identity can be at risk: using small DNA sequences
from the Y chromosome, researchers at MIT were able to extract the genealogical
information (surname, relatives) and religious background of fifty people from the
1000 Genomes Project [127]. The same rationale applies to the use of shapes in the
case of volume rendering [103]. In summary, low-accuracy channels do not guarantee
the preservation of privacy and appropriate risks should be assessed in the context of

the externally available information about the individuals who are represented.
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2.5 Gaps and Research Opportunities
Based on our survey, we present an analysis of the key gaps and research opportunities
thereof. We organize this section based on research themes, each of which addresses
the following key questions motivated by the well-known Helimeijer catechism [128]:
e What are the limitations of the current practices of privacy-preserving data
visualization?
e Why is it important to address those limitations?

e How does a research approach or contribution look like, for addressing these
gaps?

e Who will be the beneficiaries of the proposed research direction: data consumers

or owners?
We believe these questions will help us understand both the significance of the research
problem and the potential impact of the visualization-specific solutions. We sort
the following research themes based on the authors’ subjective understanding of the
connection between related visualization research and the suggested directions: ones
where there are immediate connections are presented first. This is, however, not a

commentary on the importance or impact of the suggested research.

2.5.1 Uncertainty visualization and privacy

The lack of empirical evaluation of the effect of anonymized visualization on users’
perception of privacy is a key gap in the literature. With the exception of a
few [85, 129, 130], we did not find any other examples where controlled studies have
been conducted to investigate how well the theoretical guarantees of privacy hold
good in practice. Such studies will help data owners and custodians understand
the following: how easy or difficult is it for people to breach privacy for a single
dataset, how well users can leverage their background knowledge to breach privacy,
and what other additional context can either be suppressed or controlled to add

uncertainty or confusion in the minds of an attacker. In recent years, the broadly
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defined research area of uncertainty communication has made a lot of progress [131].
As mentioned before, there is an inherent link between uncertainty and privacy: many
anonymization methods can be treated as uncertainty quantification mechanisms and
the added uncertainty due to visual mapping has already been termed as visual
uncertainty. We need to conduct controlled studies with raw data and visualization
with uncertainty encoding and measure the ability of users in terms of time and
cognitive effort, to recover the identity of individuals or the values of sensitive
attributes by overcoming uncertainty. It would be worthwhile to use Bayesian
approaches for modeling how people’s background knowledge and prior beliefs can
lead to disclosure risks even in the presence of uncertainty in the visualization.

An application of quantification of visual uncertainty (i.e., the uncertainty
resulting from the visualization process) is that different views of the data can
be calibrated by their degree of vulnerability, in terms of disclosure risks, and
interaction constraints can be enforced so that users are only able to access views that
guarantee a minimal level of privacy. For multiple coordinated views, this means that
details-on-demand [132] can be constrained based on privacy parameters in addition

to the users’ goals and needs.

2.5.2 Dynamic visualization of risks for privacy stakeholders

As pointed out recently by a study [51], there is a high degree of vulnerability of
anonymized datasets, especially which contain demographic attributes, even after
applying the state-of-the-art privacy-preservation techniques. With the proliferation
of ToT-based devices and the evolving concept of smart homes [133], such vulnerability
will need to be continuously evaluated by both data subjects and technology
developers. This is a key gap in the literature, where privacy is considered only
at the time of the release of a dataset, and data custodians do not have the tools

to re-evaluate risks in the face of newly released datasets or other attack scenarios.
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This gap makes most of the open data repositories vulnerable to privacy breach, even
though personally identifiable information is not present in those datasets. With
respect to visualization research, we found very few papers [129, 85] focusing on
this aspect of privacy. There is a fertile ground for visualization research that aims
at communicating vulnerabilities in open data and privacy-utility trade-offs to all
stakeholders.

Visualization-based interfaces can play a key role in helping data owners,
subjects, custodians, and consumers dynamically evaluate the disclosure risks of
shared data. For data owners or custodians, visual interfaces [134, 39] can help
communicate privacy risks by suggesting non-obvious, probabilistic linkages [135], let
them dynamically evaluate the trade-offs among data utility and privacy risks [136]
by visualizing privacy outcomes from new and evolving metrics [137], and make more

confident decisions regarding data sharing [138].

2.5.3 Privacy-aware citizen science

Developing smart cities with the help of data collected about citizens’ mobility
patterns, preferences, habits etc., is a potential which has attracted the attention
of governments across the world. But this also means that data about people’s
location and movement are more vulnerable than ever before. The New York
Times report [139], which we pointed to earlier, and shows about the ease with
which people’s location can be known, is alarming. While this cannot be solved
simply by applying computational techniques, this issue is symptomatic of the
opaque ways in which urban data is collected and administered. A study had
previously demonstrated how urban mobility data collected by analyzing New York
City taxi trips can compromise the identity of individuals [140]. This is a research
gap relevant to both data owners and data subjects, as it is the individual’s data

that is collected and analyzed in this case. While we have encountered several
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papers [141, 106] focusing on privacy issues of spatial data, such research needs
to be integrated more deeply with the research involving privacy-preserving urban
data collection [142, 143] and decision-making. Research grounded in behavioral
sciences has recently demonstrated the benefits of using visualization-based interfaces
for granting citizens the transparency to directly administer and understand the
implications of data sharing [144]. Visualization techniques need to be further
developed and explored for more inclusive and transparent citizen science, where
third-party interference can be minimized, and citizens can more proactively exercise

their right to privacy.

2.5.4 Ethical data visualization through privacy by design

Researchers in computing and data-driven technologies are becoming more cognizant
of the moral obligations and ethical implications of research [70]. Automated analysis,
machine learning, and provenance should be controlled, and it should allow those
impacted by the decisions to appeal their decisions or seek better outcomes. We have
certain ethical obligations as visualization designers, as we generally have complete
access to data and the freedom to portray insights derived about people. When we
are presenting data to the public, as visualization designers, an abiding principle
should be to protect the privacy of the people whose data we have collected and
visualized, even if at the cost of communicating our key findings. Both data and
data visualization are not ethically neutral activities, and thus there is an obligation
to be ethical while representing data [145]. Integrating principles of “privacy by
design” [146] in visualization interfaces will be a key research opportunity to this end.
Moreover, as natural language interfaces begin to be integrated with visualization
techniques [147] and visualization techniques begin to be augmented with text-based
facts [148] care should be taken that the computationally generated facts are privacy-

preserving as well.
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2.5.5 Interpretable privacy policy-making

In the face of new legislations like the GDPR and questionable practices by online
companies about privacy policy communication, we foresee a significant amount of
research effort being dedicated towards interpretable policy-making: where both
data subjects and data owners can better understand privacy parameters before
implementing policies and data consumers can overcome the barriers of intended [47]
or unintended [46] obfuscation for better understanding policy implications. In our
collection, we encountered several papers [94, 93, 114, 86] dedicated towards studying
this problem. But most of this research is concentrated on application-specific
domains. Greater collaborative efforts across domain experts and visualization
designers can significantly improve the quality of the visualization techniques we
encountered. In many of these cases, we found data-flow diagrams, relationship
diagrams or infographics being used as a means of communicating policies. Except
for Dhotre et al. [94], we sensed a lack of quality in the visual communication of
information extracted from policy text. We believe that recent advances in text
visualization and topic modeling [149] can have a significant effect on improving
visualization techniques for communicating privacy parameters and their depen-
dencies, as extracted from policy descriptions, and make that information accessible
and actionable, especially for data subjects, who might not have appropriate levels

of data literacy to comprehend the privacy risks and policies.

2.5.6 Privacy-preserving and inclusive visualization

Many recent studies have shown that it is the poor and marginalized section of society,
who are in the greatest danger of violation of their privacy rights [150, 151]. In our
collection, we found research focusing on law enforcement agencies that collect data
about potential human trafficking involving vulnerable people [110]. Care needs to

be taken to preserve the privacy of these data subjects, who are vulnerable and
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do not have access to services otherwise guaranteed in urban areas. With the
proliferation of smartphones and wearable technology [152], visualization techniques
can be used to collect data from people who need assistance, legal, social, or otherwise.
Inspiration can be drawn from a recent study on visualization perception in Rural
America [153], and visualization can be used as a privacy-preserving data collection
medium, where people can “see” themselves as part of a larger societal structure and
can also get assurance about their privacy not being violated. Visualization designers
and researchers have a unique opportunity to be inclusive of the marginalized
and underrepresented population while, at the same time, respecting the ethics of

preserving privacy.

2.6 Conclusion
We live in times of constant threat to individual privacy, where all of us are mere
data points as part of some data-driven digital commodity. There are many risks to
such massive collection and aggregation of data, where data can be de-anonymized,
and individuals can be re-identified without their consent for malicious purposes. In
this survey, we have reflected on the challenges and opportunities that we face in
the visualization community, with respect to the larger socio-technical challenge of
privacy-preservation. One of the key opportunities for the field of privacy-preserving
data visualization is to develop novel solutions with data subjects as the stakeholder,
many of whom are often at the receiving end of uninterpretable privacy policies or
are exposed to greater privacy risk, since they come from vulnerable sections of the
society. We believe there is scope for immediate impact with all the research directions
outlined above. They will help us progress along the path of resolution of the
ongoing and ever-increasing dichotomy between individual privacy and data-driven

consumerism.
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CHAPTER 3

DISCOVERY OF VULNERABLE DATASETS

3.1 Problem Characterization

Open data portals democratize access to hitherto proprietary data, thus, encouraging
participation from both data custodians and data subjects. Data custodians, like
governments, can use this to make or improve policy decisions, while data subjects,
like citizens, can use this to understand their participation in society. Portals like
NYC Open Data [10], Kansas City Open Data [11], and City of Dallas Open Data [12]
host datasets across different domains like healthcare, economy, infrastructure, and
others.

The risk of disclosure is exacerbated with the rise of these open data portals
that collect citizens’ data and publish de-identified versions of these data, which can
be further used for research purposes. Though these portals improve the accessibility
of government data, thus, promoting transparency in governance, it also leads to
an important question: what if datasets within the open data ecosystem are linked
even without any other sensitive information from private datasets? Rocher et al.
showed that 99% of Americans can be re-identified even from heavily anonymized
datasets using a combination of demographic attributes like date of birth, gender,
zip code etc. [51]. Another study re-identified individuals from the de-identified
medical records of only 10% of the population, released by the Australian Government
Department of Health [13]. Lavrenovs and Podins showed how the privacy of
passengers could be violated through the public transportation open data, released
by the city municipal of Riga, Latvia [14]. The issue of re-identification or disclosure
of sensitive information has also been addressed by other researchers, thus, pointing

to the need to investigate the privacy issues of open datasets [154, 155, 156]. Recent
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studies have also shown that the risk of re-identification may vary over time and is
dependent on the number of datasets available at the time of analysis [157]. But,
the general practice of “release-and-forget” followed by data custodians and owners
(henceforth referred to as data defenders) aggravates this problem of re-identification
since generally, the open datasets are not reviewed for their risk posture after their
release [158, 159].

This calls for a comprehensive study into the different possible disclosure
vulnerabilities present in the open data ecosystem. Thus, in order to understand
the risk of re-identification or disclosure of sensitive information by joining datasets
from open data portals, we performed a red-teaming activity where we donned the
hat of an ethical hacker to understand the attacker’s perspective and identify the
vulnerable entry points into the open data ecosystem. Then we report some of the
vulnerabilities observed during the red-teaming exercise into the open data ecosystem
and present some other possible vulnerabilities that may arise in the future. This
helped in the development of a risk inspection workflow, named PRIVEE, along with
the tasks required to replicate the different attack strategies. These tasks are then
realized in a web-based visualization interface with the specific goal of implementing
a defender-in-the-loop analytical framework that can be privy to the disclosure risks
or possibility of inadvertent leakage of sensitive information whenever new datasets
are released. In this chapter, we first discuss the red teaming exercise through the
vulnerabilities detected during that time. This is followed by the discussion around
the development of a dataset of highly susceptible datasets, which was later used to

develop the PRIVEE workflow.

3.2 Red-team Exercise
A red-team exercise can be generally defined as a structured process to better

understand the capabilities and vulnerabilities of a system by viewing the problems

52



through the lenses of an adversary[160]. In the context of security and privacy,
red-team exercises follow the cyber kill chain by playing the role of an ethical hacker
and emulating the possible attack scenarios[161]. With the help of researchers in data
privacy and urban informatics, we performed a red-teaming exercise by inspecting
the open datasets for vulnerabilities. We engaged in a cold-start exploration process,
followed by a more focused exploitation of datasets with privacy-relevant attributes,
for developing a shared mental model of the problems related to the vulnerabilities.
The intuition here was that the datasets with universally known quasi-identifiers, like
age, race, gender, etc., can lead to the disclosure of sensitive information when joined

with other such datasets.

3.2.1 Attack through vulnerable entry points

Red-team exercises generally follow the cyber kill chain. It starts with the initial
reconnaissance step, where attackers try to find vulnerable entry points into any
target system. Moreover, attackers used quasi-identifiers [48] like age, race, gender,
and location to breach privacy by linking multiple datasets [49]. Inspired by this, we
bootstrapped our red-teaming activity by searching for datasets with these known
quasi-identifiers. During our initial exploration, analysis of these datasets led to
interesting observations where some of the datasets have a highly skewed distribution
of records across different categories of the quasi-identifiers.

For example, the dataset Whole Person Care Demographics 2 [162] from the
County of San Mateo Datahub portal [163] had only one record for a 26-year-old
female of the Hawaiian race. This can lead to identity disclosure and leak of sensitive
information when joined with other datasets. Another dataset Demographics for
Public Health, Policy, and Planning [164], from the same data portal, had only seven
records for age 19. However, out of these seven people, only one person was male.

This individual can be identified since other identifying attributes like race, language,
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and city were also present. This may also lead to attribute disclosure if other similar
datasets are exploited.

The dataset Overdose Information Network Data CY January 2018 - Current
Monthly County State Police [165] from the Pennsylvania Open Data [166] portal
had only few records for the race American Indian/Alaskan Native. But, out of these
few people, only one was of Hispanic ethnicity. This dataset also contained location
attributes, thus, making it easy to pinpoint an individual with these attributes. When
joined with other publicly available information, this information may lead to identity
and attribute disclosure for this individual.

Thus, datasets with vulnerable entry points can be exploited to reveal sensitive
information about a human data subjects. The presence of such datasets in the open
data ecosystem can be considered a warning sign that calls for the development of
a method that acts as the trusted informer for data custodians and informs them of

potential disclosures in a proactive manner.

3.2.2 Attack exploiting dataset joins
The previous attack scenario established that vulnerabilities exist in individual record-
level datasets. This leads to an essential question of whether these datasets can be
actually joined with other open datasets to expose sensitive information. Join is a
fundamental operation that connects two or more datasets, and joinability is the
measure to determine if two datasets are linkable by any number of join keys [167,
168]. When these join keys coincide with protected attributes like age, race, location,
etc., the outcome of the join can potentially reveal sensitive information about an
individual or even disclose the individual’s identity.

As a next step in the red-teaming exercise, we randomly selected vulnerable
pairs of datasets from multiple open data portals [10, 11, 12] and analyzed them

for joinability risks, in terms of what kind of sensitive information may be leaked by
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these joins. Several iterations of the selection of joinable pairs and join keys led to the
discovery of disclosure between the datasets Juvenile Arrests and Adult Arrests from
the Fort Lauderdale Police Open Data Portal [169]. We observed that two individuals,
aged 15 and 21, mentioned separately in these datasets, were involved in the same
incident of larceny on 20" March 2018, at the Coral Ridge Country Club Estate,
Fort Lauderdale. This can be an example of identity disclosure by joining two open
datasets. Further investigation revealed other examples where two individuals, aged
17 and 21, mentioned separately in these datasets, were involved in the same incident
of motor vehicle theft on 8" of July, 2018. The presence of linking attributes like
case id between datasets Adult Arrests and Citations helped to reveal an incident
where a 28-year-old black male who was arrested for larceny on 26" September 2021
at NW 10" Ave, Fort Lauderdale, was also cited for disobeying stop/yield sign and
driving while license is suspended at NW 9! Street, just around 3 miles away from the
arrest location. A similar incident was also observed while joining datasets Citations
and Juvenile Arrests on the linking attribute case id. In this incident, a 17-year-old
white male was first charged with disobeying a red light. He was later arrested for
possession of cannabis over 20 grams on 4" August, 2015, both at N Federal Hwy,
Fort Lauderdale.

We repeated this exercise and found other examples where dataset joins
ultimately led to disclosures. In another example, two datasets, namely FElectronic
Police Report 2016 and FElectronic Police Report 2015 from New Orleans Open Data
portal [170], were joined on quasi-identifiers like location, victim age, offender age,
wictim race, victim gender, and offender gender. On inspection of the joined records,
we observed that a 22-year-old black male was charged with attempted robbery with
a gun against a 27-year-old white male at 6XX Tchoupitoulas St on 13" July 2015 at
01:00 hrs and again on 30" April 2016 at 03:00 hrs with attempted simple robbery.

This is an example of identity disclosure even when masking techniques are used
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on the address. Another observation from these joined records revealed an incident
where a runaway female juvenile of age 17 was reported at 85XX Dinkins St on 26
February 2015, and the same incident was closed through a supplemental report one
and half years later on 7" December 2016. Incidents like these may be rare; hence,
identifying the individuals from these records may not be difficult.

We also observed such examples across other open data portals. Datasets
APD Arrests Dataset by Neighborhood, and APD Field Interview Cards Dataset by
Neighborhood from the Albany Police Department [171] were joined on the attributes
age, race, sex, and neighborhoodry. We observed that a 28-year old white male was
interviewed by the police in the Washington Park neighborhood at 09:08 hrs on
1% December, 2020 and was later arrested for trespassing on enclosed property at
12:32 hrs. This leads to attribute disclosure for the individual arrested as the arrest
details are revealed. Joining other datasets like APD Arrests Dataset by Patrol Zone
and APD Field Interview Cards Dataset by Neighborhood from the same data portal
revealed similar incidents where a 26-year old black female was interviewed at 11:23
hrs on 11 December, 2020 and was later arrested at 21:25 hrs for "assault with
intent to cause physical injury”. In another example, joining datasets APD Field
Interview Cards Dataset by Neighborhood and APD Traffic Citations by Neighborhood
on a broader set of attributes like age, sex, neighborhoodxy and date led to another
interesting observation related to a police incident. We observed that a 23-year old
male was stopped for a field interview on 23 January, 2021 at 2:45 am. Since field
interviews are usual routine stop and search activities by the police, this may seem a
regular incident. But the other dataset informed that an individual of the same age
and gender received a citation on the same date and at the exact location at 2:48
am, just 3 minutes after the incident from the first dataset. Since both these records

seem to belong to the same person, this is a possible identity disclosure, and it was
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discovered using a combination of date and quasi-identifiers like location coordinates,

age, and gender.

3.2.3 Attack through transitive dataset join

Inspired by these examples and the concept of transitive dependency in
databases [172], we explored the concept that two datasets, which have no shared
attributes between them, can still be joined if they have shared attributes with a
third dataset. We experimented with different permutations of dataset joins in order
to find an example of transitive disclosure. Though we did not find any examples of
transitive disclosure at this stage, this can be an interesting field of research that

can further strengthen the inspection of disclosure risk in open datasets.

3.3 Development of Vulnerable Datasets
Open data portals contain a multitude of datasets on varying topics like economics,
health, and others. However, they may not be relevant in information disclosure
about human activity. On top of that, the problems discussed in the previous section
press for an urgent need for a smaller subset of open datasets focused on disclosure
risks. Hence, we curated a seed set of datasets that contains a subset of the open
datasets, which may be more susceptible to vulnerabilities related to disclosure. In

this section, we discuss developing this dataset and the learning outcomes.

3.3.1 Data collection

Many open data portals are developed using frameworks/APIs like Socrata AP [40],
CKAN API [173], DKAN API [174], etc. We selected the Socrata API as our source
for the open datasets. Though other APIs could have served a similar purpose, we
planned to start with Socrata and develop a generalizable approach that can help

integrate the other publicly available APIs.
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First, we queried the list of all available data portals through Socrata Discovery
API. From each of these data portals, we queried the metadata for all the data items
available within them. Data items include datasets, maps, data dictionaries, etc. We

filtered these results and created a list of 39, 507 datasets.

3.3.2 Data analysis
Manually analyzing all these datasets would be a difficult task for any analyst. Thus,
we developed a semi-automated program that filters datasets if they have some
combinations of the known quasi-identifiers. Initially, we started with a list of the
known quasi-identifiers like age, sex, race, and age group, to name a few, and the
program selected the datasets with these attributes. After evaluating the attribute
space of the selected datasets, we subsequently updated this list to include more
such quasi-identifiers. This helped us to select a broader set of datasets that may be
susceptible to disclosure risk through these quasi-identifiers.

Multiple iterations of this process led to the development of a set of about 5404
datasets with some combination of the quasi-identifiers. We also manually verified

the unselected datasets to check if we had missed any such vulnerable datasets.

3.3.3 Data curation

After reducing the set of candidate datasets, the next step was to determine if these
datasets relate to human objects and activity. Hence, we started manually curating
the metadata file to understand what each dataset pertains to. For each of the
datasets, we opened them in their respective data portals and analyzed them to
understand if they were related to human data subjects or not. We observed many
such datasets with location attributes (like zip code, address, etc.). Nonetheless,
many of them do not necessarily relate to human beings, like datasets for street
lamps, building details, etc. We dropped those datasets since they are irrelevant in

the context of the privacy of the data subjects.

58



Type of Records
280
496 data portals 210
, 426 seed 140
Retrieved
1 datasets using datasets 70
Socrata API
Removed 0
Irrelevant Individual Aggregated
data
Non-
resources E;j!zh Distribution of Quasi-Identifiers
Positives
1 Removed Age 114
lists, charts,
views datasets Gender 129
H H Race 122
datasets =) With quasi
identifiers  |Location 118
0 100 200 300 400

Figure 3.1 Dataset development: The dataset development process starts with
over 216,000 data resources from 496 data portals. After a few filtering steps, it
consists of 426 highly susceptible datasets with different levels of granularities and
distribution of quasi-identifiers.

Removing these datasets related to non-human objects, we curated a seed set
of 426 datasets of varying granularity. 151 of these datasets were individual record-
level (e.g., records of people committing crimes) while the rest 275 datasets were
aggregated record-level (e.g., college records) datasets (Figure 3.1). We understand
that a dataset collection like this should be continuously updated. However, we
need more infrastructure to set up a method to fetch and update this collection
regularly. Thus, we also plan to release a metadata file for this dataset collection as

a contribution to this dissertation.

3.4 Discussion
Identifying disclosures using traditional search options in open data portals is
challenging. Moreover, data custodians might need more information than shown

in the search results to find disclosures. Thus, this context demands a visual analytic
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system specifically targeted toward disclosure evaluation and other privacy pitfalls.
Our workflow PRIVEE, described in the later chapters, can be considered as an initial
attempt toward this purpose. The visual analytic design space explored in PRIVEE
helps establish a streamlined workflow responsive to the data custodian’s inputs yet
distilling the results effectively.

However, this system can have users other than a data custodian. During the
development of the workflow, we realized that a data subject could also be interested
in discovering if their data can be compromised by exploiting these privacy pitfalls.
Our work can address the data subjects’ perspective too. But an approach leveraging
an individual user’s attribute values may be more efficient in this context. Hence, we
envision that future design solutions in this space will be more geared toward the data
subjects’ perspective. This can be incredibly beneficial in encouraging data activism
by citizens [175, 176, 177].

Another attack scenario we envisaged during the red teaming exercise is the
disclosure of sensitive information through the transitive join of open datasets. We
are still leading a separate effort toward quantifying the transitive disclosure risk.
The primary challenges in this effort are the presence of limited examples yet a high
number of possible combinations to explore. This may serve as an important field of
research since disclosures like this are difficult to detect by data custodians, yet they
can have a massive impact on the privacy of the data subjects. We hope researchers

look into different visual analytic solutions to address this attack scenario.

3.5 Conclusion
Open datasets are essential in improving government transparency and empowering
citizens with access to hitherto proprietary data. We discuss some of the privacy
pitfalls of open datasets with real-world examples we observed during an ethical

hacking exercise. This highlights the importance of addressing the privacy pitfalls
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on an urgent basis. Towards that end, we develop a collection of highly susceptible
datasets that help effectively emulate the strategies developed during the exercise
and identify disclosures. We also envision exploring possible disclosure risks beyond
joinable pairs and improving the web-based interface’s data processing capabilities in
collaboration with big data experts. We believe this dataset and the vulnerabilities
we observed will be used to develop more effective solutions and help data defenders

safeguard the interests of the open data ecosystem.
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CHAPTER 4

PRIVEE: DISCLOSURE INSPECTION WORKFLOW

4.1 Introduction

Accessibility of open data portals (e.g., NYC open data [38]) is like a double-edged
sword. On the one hand, they make institutions and organizations accountable by
providing public access to proprietary information. On the flip side, inadvertent data
leaks could compromise the privacy of data subjects. Recent research has shown
how the lack of checks and balances in the conventional release-and-forget model [51]
makes it surprisingly easy to breach privacy. An underlying reason for such a high
privacy risk is the joinability of multiple open data sets that contain information about
people. However, data owners and custodians (hereafter referred to as defenders) lack
effective ways in which joinability risks can be summarized and communicated at the
time of data set release or whenever a vulnerability is detected online.

As discussed earlier, several recent examples of privacy breach scenarios
emphasize the urgent need to address this problem. The Australian Department
of Health released de-identified medical records for 2.9 million patients (10% of the
population), but researchers were able to re-identify the patients and their doctors
using other open demographic information [13]. Passengers’ private information
might be disclosed through the public transportation open data released by the city
municipal of Riga, Latvia [14]. Researchers were also able to re-identify the details for
91% of all the taxis in NYC using an anonymized open taxi dataset and an external
dataset [140].

Complete automation of the risk evaluation process is not feasible due to several
reasons, like the presence of noisy metadata and the requirement for human expertise.

Noisy metadata hinders the automatic profiling of these datasets. The various
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definitions and temporal nature of privacy risks, owing to the intermittent release
of new datasets, point to the necessity for a human-in-the-loop approach, where
defenders can configure and update risk computation techniques based on evolving
compliance needs.

To address this critical need, we conducted a red-teaming exercise in the form
of a design study with urban informatics and data privacy researchers to develop
a proactive risk inspector that is privy to the sensitive information that can be
leaked before and after dataset release in urban, open data portals. PRIVEE, the
visual analytic workflow resulting from this design study process, acts as a data-driven
risk confidante and informer for the defender in the analysis loop. PRIVEE emulates
potential attack scenarios and enables defenders to triage risky dataset combinations
and ultimately diagnose the severity of disclosed information through dataset joins.
A defender can thus proactively check for risks while releasing a dataset or depend
on PRIVEE to be alerted when new vulnerabilities emerge owing to newly available,
joinable data.

As the first contribution of this design study, we characterize the problem of
disclosure evaluation and develop a set of visual analytic tasks that can be executed
in a workflow to detect, calibrate, and inform data defenders about disclosure
risks (Section 4.2). These tasks, developed in collaboration with privacy experts,
emerged when we analyzed the problem through the lens of an adversary and
developed several attack scenarios during the red teaming exercises. We observed
that it is possible to breach the privacy of open datasets using these scenarios, thus
corroborating the findings of NYC taxi data in a larger scope where we can find
information about data subjects [140]. As our second contribution, we designed the
visualizations required for implementing the PRIVEE workflow and let defenders
explore and interpret risks at the metadata level, triage vulnerable dataset groups

and corresponding high-risk joinable dataset pairs, and ultimately reason about the
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severity of the information disclosed at a record-level The design of these techniques
is rooted in the idea of automation with transparent explanations which are responsive
to user-controlled risk configurations (Sections 4.4, 4.5, 4.6). Finally, we present an
interactive interface to help data defenders execute the workflow and demonstrate its
effectiveness in the end-to-end diagnosis of disclosure (Section 4.7) through two case

studies with domain experts.

4.2 PRIVEE Workflow and Tasks Characterization

The results from the red-teaming exercise confirmed our intuition that datasets with
quasi-identifiers, when linked together, can potentially divulge sensitive information.
Analyzing the functional requirements, we, together with our collaborators, concluded
that totally automating the risk evaluation process is infeasible as human intervention
is necessary at multiple stages of risk definition, interpretation, and subsequent
exploration of the dataset combinations at high risk. To formulate a solution,
we collaboratively developed PRIVEE, a visual risk inspection workflow in which
defenders can proactively engage to stay one step ahead of the attackers (Figure 4.1).

PRIVEE is motivated by protecting the most vulnerable data sets against data
join attacks. The workflow serves the dual purpose of: i) observing the open datasets
to detect potential privacy vulnerabilities and ii) being a trusted informer for the
data defenders that can visually explain and communicate disclosure risks while
encouraging a deeper exploration of the attack and defense strategies. Automating the
analysis of the disclosures directly at the record level can be an alternative, but this
may lead to a seemingly infinite number of combinations to explore. Our streamlined
workflow, developed from the experience gained during this design study process, will
help the data defenders focus on a set of highly vulnerable datasets, thus reducing the

number of combinations to be explored. In this section, we first describe the inputs
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Figure 4.1 PRIVEE is an end-to-end risk inspection workflow for open
datasets: It informs the defender in the analytical loop about potential disclosure
risks in the presence of joinable datasets. Interactive visualization plays a crucial
role in bootstrapping the risk inspection process via risk profiling, triaging and
explaining risk signatures, and ultimately detecting instances of true disclosure at a
record level. Colored borders track datasets across the goals.

and then define the high-level goals of the PRIVEE workflow in order to map them to

the corresponding visual analytic tasks ultimately realized in a web-based interface.

4.2.1 Inputs to the workflow

We initiate our defense strategy on the seed set of privacy-related datasets, which
are about people as the data subjects, that we collected during the red teaming
activity. While collecting these datasets, we followed the universally accepted common
quasi-identifiers like age, race, gender, etc., with the notion that an open data
ecosystem should, at a minimum, protect against attacks using these well-known
quasi-identifiers.

After carefully curating the metadata from the seed datasets, we observed
that there is no standard nomenclature for the attributes across the different data
portals. This lack of standardization established the importance of creating a
metadata dictionary, starting with the well-known set of quasi-identifiers like age,
race, gender, and location, and focusing on the well-known quasi-identifiers while
providing defenders the guidance and flexibility to define other privacy-related
attributes. These attributes and the datasets selected based on their metadata serve

as the inputs to the PRIVEE workflow (Figure 4.1a).
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4.2.2 Triage joinable groups (G1)

Candidate datasets for inspection selected from the initial input can be of the order
of tens or hundreds. Finding all possible combinations of dataset joins among them is
computationally expensive. Moreover, the large set of join outcomes will not lend well
to human interpretation of risk. Also, during the red-teaming exercise, we observed
that the risky datasets could also be construed from the datasets with vulnerable
data distributions. Therefore, the next tasks in the defender’s workflow are to focus
on groups of datasets that can be joined and then triage those groups based on risk
indicators:

T1: Explore cluster signatures: As shown in Figure 4.1b, this task lets defenders
explore cluster signatures in terms of presence (clusters cl, ¢3) or absence (cluster c2)
of the privacy-related attributes and their overall semantics. Involving the defender
ensures that their inputs influence the algorithms used for grouping, using weighted
clustering. They can thus control the triaging process by judging the groups’ risks
and privacy relevance. This task ultimately helps them select clusters of interest for
further inspection of joinability risks.

T2: Find vulnerable datasets based on data distributions: The red-teaming
exercise highlighted the presence of disclosure risk in datasets with a highly skewed
records distribution across different categories of the quasi-identifiers. This task helps
to distinguish between the most vulnerable and other datasets by inspecting a high

likelihood of finding unique records for given quasi-identifiers.

4.2.3 Compare joinability risks (G2)

Once a cluster of datasets is prioritized for inspection as part of G1, defenders
would like to compare joinable pairs of datasets in this group that may potentially
disclose sensitive information. To achieve this goal, we use disclosure risk metrics to

automatically suggest risky pairs based on their feature profiles and then visualize
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those suggestions so defenders can interpret the metrics. The following task achieves
this:

T3: Explore and Fxplain Disclosure Risks: This task focuses on pairs of datasets
that can be ranked using multiple disclosure risk metrics. Within those rankings, we
want to use visual cues that directly explain: which features are responsible for high
risk, the differences between high and low-risk pairs, and if other features should

augment the defender’s definition of privacy relevance.

4.2.4 Identify cases of disclosure (G3)

Once dataset pairs are selected as part of G2, defenders would like to understand
the severity of the join outcomes. Fully automating this process may lead to many
scenarios where the disclosures are less concerning and do not warrant any significant
change in the defense strategies. To provide more control to defenders in their
diagnosis of cases of actual disclosure, the tasks required to accomplish this goal
are:

T4: Detect matching records across data sets: Matching records are the records
present in both datasets in a pair. The main objective of this task is to detect
lower frequencies of matching records, which may lead to the disclosure of sensitive
information about an individual or disclose their identity.

T5: Augmenting the risky feature set with suggestions: One way of discovering
disclosures is finding attributes that have the same values for all the records of the
joined datasets. For example, joining two hospital datasets may reveal that all the
patients common in both the hospitals are treated for cancer, leading to attribute
disclosure for these patients. In this task, we suggest a set of attributes that may be
highly related to the joining attributes, thus helping the users augment the feature

set for the dataset join.
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Figure 4.2 Interface Design: The design of PRIVEE comprises rich interaction
among filters and multiple views: (a) Filter area helps select datasets based on
metadata like tags, data granularity, and privacy-related attributes; (b) Projection
View lets the defenders compare the signatures of different joinable groups of
datasets and evaluate vulnerable data distributions; (c¢) Risk View helps compare
the risk for dataset pairs and select the high-risk pairs; (d) Disclosure Evaluation

View helps to analyze the matching records for potential disclosures.

4.3 Design Overview
The design of PRIVEE is motivated by the need for a transparent explanation and
evaluation of the risk inspection process. We implemented a web-based interface that
enables data defenders to iterate between multiple entry points, evaluate the reasons
for the dataset joinability and analyze disclosure risks for different combinations
of datasets and attributes. In this section, we provide an overview of the design
requirements for realizing the aforementioned visual analytic goals and tasks.
Risk Profiling at metadata level: PRIVEE helps to analyze the datasets’ risk
profiles through a filter bar, located the

conveniently at top of the
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interface (Figure 4.2a), which contains a search option for the different tags and
options to select the data portals and the dataset granularity. During the initial
page load, this filter bar is positioned at the center of the page in order to avoid
overwhelming the user with the search results. Defenders can select any
combination of the tags from the tags search option, which is enriched with a
modified bar chart showing the frequency distribution of the tags. Though the tags
are sorted in descending order, the grey bar in the background (achieved by
tweaking a linear-gradient bar) provides an idea of the frequency distribution of
these tags among all the collected datasets. Privacy-related attributes can also be
selected using filters.

Triaging joinable groups: In order to fulfill G1, PRIVEE employs a set of
visualizations to help the data defenders triage the joinable groups from the datasets
selected using their metadata. This includes a projection plot, a word cloud, and
a bar chart depicting the attributes’ frequency, as illustrated in Figure 4.2b. This
combination of visualizations is repeated for the different groups of joinable datasets.
Though PRIVEE automates the grouping of the datasets, these visualizations provide
the data defender a transparent method to understand the group signatures and
update the groups based on their domain knowledge and definition of privacy
relevance.

Finding vulnerable datasets: PRIVEE helps the data defenders select vulnerable
datasets by showing a distribution of the values of the privacy-related attributes
through a combination of histograms (for numerical attributes) and bar charts (for
categorical attributes), as shown in Figure 4.2b. This combination is repeated for each
dataset, ranked according to their degree of vulnerability. It is also responsive to the
privacy-related attributes selected through the filter area. The vulnerable categories
for these attributes and their labels are shown in bright red to help defenders efficiently

select vulnerable datasets.
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Comparing Joinability Risk: PRIVEE automatically computes the possible pairs
from the datasets selected from either the Projection View or the Vulnerable Datasets
View and ranks them according to their joinability risk. The visual cues, shown in
Figure 4.2¢, help the data defender compare different datasets and select the high-risk
pairs on a priority basis. Overall information about the risk score distribution allows
flexible selection of dataset pairs of varying risk.

Identifying disclosures: The disclosure of sensitive information can depend on
multiple factors, subject to evaluation by the data defender. In this Disclosure
FEvaluation View, as shown in Figure 4.2d, PRIVEE lets the data defender analyze
the matching records generated for a specific dataset pair and a join key selected
from the Risk Assessment View. PRIVEE also suggests other features to help the
defenders select a better join key, helping them understand the relationship between

different attributes and possible disclosures.

4.4 Triage Joinable Groups (G1)
Data defenders need to analyze the degree of joinability between datasets. Hence, the
design requirements for addressing tasks T1 and T2 are to develop human-in-the-loop
clustering methods responsive to multiple definitions of privacy relevance, along with
transparency in analyzing cluster signatures. This enables defenders to develop a
mental model of the context and the degree of the potential vulnerability of subsequent
joins. In this section, we discuss the analytical methods and visualizations to find

and triage the joinable groups.

4.4.1 Weighted clustering for finding joinable datasets

Converting Data Attributes to Word Embeddings: The joinability of two
datasets is a function of shared attributes. Thus, the datasets with similar attributes
should be more joinable. Attribute names in open datasets are often noisy and

inconsistent, making it computationally difficult to perform a binary search for the
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presence or absence of certain attributes. We focus on the idea that similar attribute
names can capture the semantic similarity among multiple datasets that might have a
similar context. We use a word-embedding approach that simultaneously satisfies the
need to capture datasets’ joinability and their semantic similarity. Word embeddings
can be defined as real-valued, fixed-length, dense, and distributed representations
that can capture the lexical semantics of words [178, 179]. Thus, we converted
the data attributes into their corresponding word embedding form using Python’s
spaCy library [180] and created a vector representation for the attribute space of each
dataset. The vectors with a smaller distance between themselves signify datasets with
similar attributes, therefore more joinable.

Adding Weights for Privacy-related attributes: At this stage, all the data
attributes have equal importance in the vector representation of a dataset; hence,
datasets with attributes like version, version number, etc. may be marked similar
to each other. But these attributes may not have much significance in the context
of privacy. Therefore, we decided to add weights to some of the privacy-related
attributes identified from the seed dataset corpus. Attributes like age, race, gender
and age at arrest were selected, and adding more weights to these attributes signifies
that datasets having these attributes may be marked as more joinable. Any disclosure
using these datasets can be considered a high risk, which will help further triage the
datasets.

Cosine similarity is widely used to measure the similarity between words and
documents [181, 182]. However, word embeddings are mere representations of the
words, and multiplying them with numeric weights would not increase the cosine
similarity between two datasets. Thus, we introduced a weight vector where we assign
a weight if the privacy-related attributes selected by the data defender are present
in the dataset. If a data defender selects the privacy-related attributes [age, gender,

race], then the corresponding weight vector for a dataset with only the age and gender
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attributes would be [z, 0, x|, where x represents the weight assigned to the privacy-
related attributes. We concatenate these weight vectors with the corresponding word
embedding vectors to get the final vector representation of each dataset.
Projecting the datasets and finding Clusters: Each dataset is now represented
by a vector with more than 300 elements/dimensions, and comparing these datasets
using a two-dimensional (2-D) or three-dimensional (3-D) plot would be challenging
if all the dimensions were used. Hence, we used the t-SNE dimensionality reduction
algorithm to reduce these into two-dimensional vectors [183]. A 2-D projection of
the datasets might not readily reveal dataset groupings. Thus, we experimented
with clustering algorithms like KMeans [184], DBSCAN [185, 186], Birch [187], and
OPTICS [188, 189]. After a careful analysis of the clusters’ quality and the cluster
density scores, we selected the DBSCAN algorithm.

Evaluating the clusters: There can be multiple groups of similar /joinable datasets,
which would lead to the creation of multiple clusters. A data defender may find it
challenging to evaluate all of these clusters. Therefore, we have employed a few cluster
evaluation techniques to triage these clusters (T1).

One of such metrics is the Calinski- Harabasz Index which is defined as the ratio
of the between-cluster dispersion and the inter-cluster dispersion, where dispersion
means the sum squared distance between the samples and the barycenter [190]. A
higher score signifies that the different clusters are far away, implying better cluster
formation. We designed an experiment to evaluate the difference in the results from
this metric along with other metrics like Silhouette Score [191] and Davies-Bouldin
Index [192] and selected the Calinski-Harabasz Index since we observed that it could
efficiently guide defenders in finding meaningful, joinable datasets.

Finding vulnerable data distributions: A particular cluster can have multiple
datasets with vulnerable data distributions, leading to the disclosure of sensitive

information when joined with other individual record-level datasets. Hence, we
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found such data distributions and ranked these datasets according to their degree
of vulnerability (T2).

In order to evaluate the degree of vulnerability, we first analyzed all the datasets
and created the record points for the privacy-related attributes present in them.
Record points are the unique categories for a specific attribute, while vulnerable record
points are those record points that have very few records for them, as shown in Table
4.1. These datasets are then sorted based on the number of such vulnerable record
points present and the frequency of the most vulnerable record point. The intuition
here is that a dataset with more vulnerable record points is more prone to disclosure
risk using these privacy-related attributes.

Table 4.1 Sample Record Points

Record points Description
[“age”, 11, 1] For age=11, there is only 1 record
[“age”, 15, 5] For age=15, there are 5 records
[“gender”, “F”, 2] | For gender="“F", there are 2 records

4.4.2 Visualizing joinable group signatures

We designed the Projection View to provide an overview of the datasets and the
joinable groups (T1) and perform an automatic evaluation of the vulnerable data
distributions of the datasets in each joinable group (T2). Data defenders can review
the group signatures through the different components of the Projection View and
update the parameters to see the details and the data distribution of the datasets
that match their mental model of privacy relevance. The components of these views
are described as follows:

Joinable groups: Given a set of datasets selected based on their metadata,
defenders need to find groups of datasets that can be joined together. The

analytical process is performed automatically by PRIVEE, leading to the formation
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Figure 4.3 Projection View: A group of joinable datasets is represented in this

view using (a) a projection plot. The (b) frequency distribution bar chart and (c) a
word cloud for the attributes of a group of joinable datasets help in the transparent
explanation of the group signatures.

of joinable clusters, which are represented using a multi-dimensional projection plot,
as illustrated in Figure 4.3a. Here, a red dot represents an individual record-level
dataset in a particular cluster, while the grey dots represent the datasets not in that
cluster. During this design study, we realized that some of the datasets are highly
joinable due to their similarity in the attribute space, which would cause overlapping
of the dots in a cluster. Hence, the overlapping datasets are represented by a single
dot with the number of overlapping datasets inscribed in it. For example, Figure 4.3a
shows a cluster of seven highly similar datasets represented using a red dot. This
view contains multiple projection plots, where each plot represents a group of joinable
datasets. It helps the data defender quickly compare the different groups from a single
view. The dual color encoding scheme (red-grey) helps visually differentiate between
the datasets in a group and the other datasets. Initially, a scatterplot with different
colors for the different clusters was also considered for this view. But it was realized

that it is challenging to assign perceptually different colors to each cluster when the
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number of clusters is large, due to the limits of perception. Hence, a multiple plot
design approach was chosen with the two-color encoding scheme.

Transparent explanation of joinability and vulnerability: Understanding
the cluster signatures is crucial in understanding the reason behind the genesis of a
joinable group (T1) and the presence of data vulnerabilities (T2). Since we have
construed these dataset groups based on the similarity in their attribute space, it
is essential to understand the frequency of the attributes present in these groups.
As a result, bar charts become the natural choice for displaying the most frequent
attributes in a group and their frequency, as illustrated in Figure 4.3b. These
bar charts are sorted according to the attribute frequency, yet the frequencies of
the privacy-related attributes are shown first. The vulnerable datasets are also
represented using bar charts (for categorical attributes) / histograms (for numerical
attributes) for each of the privacy-related attributes present in them. Bar charts can
have the limitation of visual scalability where only a certain number of bars can be
shown due to space constraints [193]. In order to overcome this limitation, we also
introduce word clouds of the attributes, as shown in Figure 4.3c. All the attributes
present in at least two datasets in a joinable group are represented in this word cloud,
with the size channel representing their frequency.

The bar chart in Figure 4.3b explains the similarity of the datasets since all
seven of these datasets have gender and race attributes, thus transparently explaining
the group signatures. Besides overcoming the visual scalability limitation of the
bar chart, the word cloud also helps the data defenders look for other attributes
of interest that may have a lower frequency but have much larger relevance in
the context of privacy. For example, attributes like victim age and offender age
may not be significant for a general user; however, a data defender working with
law enforcement may find them interesting since these attributes are used in police

datasets. PRIVEE enables the data defender to update the default selection of the
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privacy-related attributes, which triggers a re-rendering of the whole Projection View,
thus automatically calculating new groups of joinable datasets with extra weightage
to the newly added privacy-related attributes victim age and offender age. Together,
these Projection View components enable human-in-the-loop dataset grouping that
is adaptive to various definitions of privacy relevance by transparently displaying

measures to evaluate cluster signatures.

4.5 Compare Joinability Risks (G2)
Dataset groups from the Projection View can lead to multiple pairwise combinations
of datasets, where the data defenders need to analyze each pair for their joinability
risk. Thus, the design requirement for addressing G2 is to facilitate efficient visual
comparison of the risk profile of dataset pairs and guide defenders towards focusing
on high-risk dataset pairs. In this section, we describe the metrics that can help a
data defender quantify the risk of joinability between the candidate datasets and the

subsequent use of visual cues to compare and prioritize the joinable pairs.

4.5.1 Metrics for joinability risk comparison

Multiple metrics that can help the data defenders compare the joinability risks
between different dataset pairs were explored during the design study process. In
this subsection, we define the mathematical formulas for the different metrics that
highlighted the joinability risks better and were selected as part of the PRIVEE
workflow.

Metric based on attribute profile: Shannon’s entropy is a measure of the
uncertainty of a random variable [194]. Tt has been widely used as a privacy
metric [195, 196, 197, 198], as higher entropy signifies more unique values for that
attribute, thus resulting in higher disclosure risk. Hence, we used this metric to help
defenders find joinable attributes for a pair of datasets. For a pair of datasets (say

A and B), we first calculated Shannon’s entropy of each of their shared attributes
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according to Equation (4.1) and kept their maximum as the entropy score for that
attribute. The intuition here is that the attributes with higher entropy can be offered
as suggestions to the defender for the join key.

H(X;) ==Y P(x;)lnP(x;) (4.1)

i=1

where X represents attribute X in dataset J (J € {A, B}), H(X ) represents
the entropy of an attribute present in dataset J while x;, represents each category of
the attribute X ; in dataset J.
Metric based on dataset pairs in a join: Since the joinability of two datasets
depends upon the number of shared features/attributes between them, the joinability
risk score can be calculated as a function of the number of shared attributes and
the number of privacy-related attributes between a pair of candidate datasets. The

formulae for the joinability risk score can be defined as follows:

risk = a*xp+ (c — p) (4.2)

where « is the empirical risk ratio (a constant), p is the number of privacy-related
attributes and ¢ is the number of shared attributes.

The joinability risk score depends on the empirical risk ratio, and to determine
its value, we designed an experiment to calculate the risk scores of all the possible
combinations of joinable pairs from the seed datasets (*2°C, = 90,525 combinations).
We observed that the value a = 50 works well to separate the dataset pairs with
privacy-related attributes and pairs without them; hence, the empirical risk ratio was

fixed at the value of 50.

4.5.2 Visual risk assessment
PRIVEE uses multiple visual analytic components to encode the joinability risk

metrics, and these components together form the Risk Assessment View. This
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Figure 4.4 Risk Assessment View: (a) The distribution of privacy-related
attributes can affect the joinability risks between (b) dataset pairs. Data defenders
can compare the risk between these pairs by analyzing the (c) sorted bar chart
showing the shared attributes and the joinability risk score represented by the

(d) risk score bar. They can use the (e) risk score distribution histogram to focus on
the dataset pair of their interest.

subsection describes how we map these metrics with the components of this view so

that data defenders can proactively analyze the risk between the candidate datasets.

Comparing shared attributes set: The shared attributes’ entropy metric encodes
the attribute profile information, potentially highlighting if an attribute should be
included in the join key. In the Risk Assessment View, these attributes and the
entropy are represented using a descending sorted bar chart between the dataset
names, as illustrated in Figure 4.4c. The horizontal position shows the different
attributes, while the vertical position encodes the entropy of these attributes. The
bars for the privacy-related attributes are colored in violet (plum kingdom), while the
other bars were colored in grey, thus following the similar colorblind-safe two-color
strategy used in the other views. During an initial design iteration, each shared
attribute was represented using a small rectangular box, with each box containing
the attribute name in it. However, we realized that this design leads to the loss of
information about the difference in entropy between the different shared attributes.

This led to the current design of the sorted bar charts where the data defender can
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analyze the entropy, select any number of the shared attributes as the join key for
the dataset pair and evaluate them for disclosures.

Comparing risks: Each dataset pair (Figure 4.4b) is represented with a combi-
nation of the following components: dataset names, shared attributes, and the
joinability risk bar. These pairs are sorted according to the risk score. Thus,
a top-ranked dataset pair would imply higher chances of joinability. In order to
highlight the joinability risk score between the dataset pairs, the Risk Assessment
View has a joinability risk bar for each dataset pair (T3), as shown in Figure 4.4d.
This bar is filled with a linear gradient between the grey and red colors, representing
low-risk and high-risk dataset pairs. The exact risk score is highlighted using a black
vertical bar. The choice of the colors, following the two-color scheme used across the
different views in PRIVEE, helps express the joinability risk score on a scale of low to
high scores. This view also shows an overview of the shared privacy-related attributes
and the risk score distribution between the dataset pairs using a horizontal bar chart
and a histogram (Figure 4.4a and Figure 4.4e). PRIVEE also automatically selects
the joining attributes based on their entropy and privacy relevance, which the data

defender can further augment.

4.6 Identifying Disclosures (G3)
The design requirement for addressing tasks T4 and T5 is to let the defenders judge
the degree of sensitive information that can ultimately be disclosed through the joins.
Since an apriori definition of risky features is insufficient, PRIVEE also suggests
additional features to defenders for diagnosing sensitive matches. In this section, we
first discuss the methods used for evaluating the disclosures, followed by the design

of the visual cues that can help evaluate them.
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4.6.1 Methods for disclosure evaluation

During the red-teaming exercise, we realized that the join key could vastly influence
the disclosure of sensitive information. In this sub-section, we discuss two methods
for disclosure evaluation:

Based on the low frequency of matching records: Matching records are the
number of records present in the joined dataset. Thus, the presence of matching
records can indicate the possible disclosures at the record level. However, the number
of matching records may vary according to the choice of attributes in the join key and
the type of records present in the datasets. For example, when joined on attributes x
and y, dataset A and dataset B may have 200 matching records, but when joined on
the attributes z, y, and z, they may have only 20 matching records. This implies that
the attribute combination x, y, and z have a better chance of discovering an actual
disclosure than the combination x and y. We have also observed that matching records
may contain duplicates if the original datasets have duplicate or blank entries.
Based on the mutual information between the joining attributes: The
selection of the joining attributes is an iterative process in PRIVEE. Mutual
information measures the amount of information one random variable contains about
another [199] and quantifies the mutual dependence of the two attributes of a dataset.
Hence, we use normalized mutual information to suggest other features that defenders
can use for detecting disclosures. PRIVEE automatically calculates the normalized
mutual information between the joining attributes and the other attributes of the
joined dataset. Next, it finds the top-5 attributes with the highest mutual information

score and lets defenders consider those features for detecting matches (T5).

4.6.2 Visual cues for evaluating disclosures
The design of the Disclosure Evaluation View follows Shneiderman’s mantra [132],

where PRIVEE first provides an overview of the matched records, then allows the
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defender to explore them, and finally lets them view the record details on demand.
Here we discuss the comparative visual cues [200] that aid in disclosure evaluation:
Exploration of matching records: Parallel Sets is a visualization method for the
interactive exploration of categorical data, which shows the data frequencies instead
of the individual data points [201]. PRIVEE shows the matching records using a
modified parallel sets visualization, as illustrated in Figure 4.2d. Here, each attribute
of the join key is represented using a stacked bar, where the height of the stacks
represents the frequency of the different categories of that attribute. In the case
of a numerical attribute, a histogram replaces the stacked bar and shows its data
distribution. The numerical data is then divided into four equal bins to map them with
the categories of the other join key attributes. The parallel sets for the privacy-related
attributes are colored in violet, while that for the other attributes are colored in grey,
following the similar color scheme used in the other views. The categories across
the numerical and categorical attributes are connected using ribbons. Each ribbon
represents the number of records in the joined dataset belonging to both categories.
A simple click interaction on any of these ribbons opens a pop-up window showing
the details of the records represented by the selected line.

This design helps detect both identity and attribute disclosures through the
matching records (T4). The thickness of the line may represent the identity
disclosure, while the height of the stacked bar shows the attribute disclosure. For
example, if there is only one record with a certain combination of all the join
key attributes, this would be represented by a thin ribbon across the parallel sets
visualization. This may potentially lead to identity disclosure if an individual is
uniquely identified with this combination of the join key. Suppose if an attribute
has only one category, then the corresponding stack height would cover all the
height allocated to a certain attribute, revealing that all the individuals belonging

to both the datasets have a particular feature and leading to attribute disclosure.
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This Disclosure Evaluation View helps the data defenders ascertain the degree of
the sensitive information disclosed by visualizing the overall relationship between the
different attributes of the matching records yet retaining the granularity of the dataset
at the record level.

Suggesting potential joining attributes: PRIVEE uses bar charts and
histograms to encode the top-5 features with high mutual information with the join
key attributes. These suggestions are positioned on the left and right-hand sides of
the parallel sets, representing the feature suggestions from either of the
datasets (Figure 4.2d). The privacy-related attributes are also highlighted in violet,
while the others are colored in grey, following a color scheme similar to the
interface’s other views. Selecting any attributes from the feature suggestions would
also update this visualization to include the newly selected attributes. These
attributes can be used as suggestions for improving the initial set of joining
attributes (T5). The data distributions and the ranking of the attributes help boost

defenders’ understanding of the risky feature set that can be used as the join key.

4.7 Case Studies

4.7.1 PRIVEE as a risk confidante
In this subsection, we report a case study that our data privacy collaborator and
co-author co-developed using the web interface of PRIVEE. He is a senior researcher
with more than 15 years of experience in privacy-preserving data analysis and used
PRIVEE as a privacy auditor. Specifically, he wanted to determine if there are any
disclosure risks with the health-related datasets published in the open data portals
and validate the role of PRIVEE as a risk confidante for data defenders.

Our collaborator selected the aggregated datasets in the interface PRIVEE along
with the privacy-related attributes age and race; and then filtered them with the

keyword “health” (see Figure 4.5a). He also enabled the Vulnerable Datasets switch to
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Figure 4.5 PRIVEE as a risk confidante for defenders: (a) Selecting datasets
based on their metadata like the popular tag “health” and their granularity of
records, (b) finding and diagnosing the vulnerable data distributions and observing
that there is only 1 record for the race “Hawaiian”, (¢) comparing the joinability
risk with the individual record-level datasets and (d) evaluating the disclosures with
the top 4 individual-level datasets and observing that there is no disclosure.

check if there are any vulnerabilities in the data distributions of these datasets. At this
point, our collaborator observed that the first few clusters do not have such vulnerable
datasets. But the fourth cluster has the dataset Whole Person Care Demographics
2 [162] from the open data portal of San Mateo county [163]. This dataset had only
1 record where the race was Hawaiian (Figure 4.5¢) (T2). This was a significant
cause of concern since if somebody knows a person in that county who identified as
Hawaiian, then any dataset with a similar race category could potentially expose her
health records. Thus, he started analyzing the risk of joining this dataset with all the
individual-record level datasets available through PRIVEE, as shown in Figure 4.5¢
(T3). He decided to join these dataset pairs on the selected privacy-related attributes
and the location attribute geocodedcolumnn since he wished to find datasets containing
information relevant to this location. He observed that none of the top-4 dataset pairs

yield any matching record when joined on these attributes (Figure 4.5d). Thus, our
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Figure 4.6 PRIVEE as a trusted informer for defenders: (a) Understanding
group signatures and updating privacy-related attributes, (b) comparing the risk
between dataset pairs, (c) evaluating the matching records using the feature
suggestions shows that only one incident was open in 2015 but closed in 2016,

(d) inspecting record details shows that a runaway juvenile can be identified despite
the location being partially masked.

collaborator concluded that though this aggregated dataset has a meager count of a
particular race, it does not lead to any disclosure (T4). He also analyzed a few other
vulnerable datasets similarly but found no disclosures. Thus, PRIVEE acts as a risk
confidante for the data defenders where they can analyze the disclosure risks for the
vulnerable datasets in the presence of other open datasets. He also observed that he
had not seen a tool with similar capabilities for interactive risk calibration and triage
and commented: “this is a great visual tool to explore privacy risks of open data, with

the ability to visualize privacy risk across datasets in a dynamic manner”.

4.7.2 PRIVEE as a trusted informer

We report a case study that a researcher developed using the PRIVEE web interface.
He is a senior researcher and university professor with over 25 years of experience
in the fields of big data, cyber security, and scientific visualization. He focused on

validating the role of PRIVEE as a trusted informer for the data defenders.
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The researcher started by choosing the New Orleans Open Data portal [170] and
observed 7 datasets on the Projection View, which were so similar in their attribute
space that they were displayed using an overlapping circle with the number of datasets
inscribed. Using the attribute distribution bar chart, he observed that none of the
default privacy-related attributes (age, race, gender) were present in this group of
datasets. However, on analyzing the word cloud, he made an interesting observation
that attributes like victim age and offender age were present in these datasets, as
shown in Figure 4.6a (T1). Since, from his background knowledge, he knew that
these attributes are generally present in police datasets, he updated the list of privacy-
related attributes to select some of the similar attributes like victim age, victim gender,
victim race, and offender age. As PRIVEE helps to triage the joinable groups of
datasets based on the data defender’s definition of privacy relevance, the Projection
View was updated to reflect the change in privacy-related attributes.

He selected all these seven datasets in order to compare the joinability risks of
the 21 possible pairwise combinations in the Risk Assessment View (T3). Since he
wanted to focus only on the high-risk pairs, he filtered out the low-risk pairs using the
Risk Score Distribution histogram. Joining the first pair of datasets, the researcher
observed that there are no matching records between them.

Next, he selected a pair of datasets, namely FElectronic Police Report 2016
and FElectronic Police Report 2015, but augmented the PRIVEE-suggested join key
attributes and made the following selection: location, victim age, offender age, victim
race, victim gender, offender gender, as illustrated in Figure 4.6b (T3). He joined
these datasets and observed 14 matching records in the Disclosure Evaluation View.
He inspected further details about a certain record and observed that a 22-year-old
black male was charged with attempted robbery with a gun against a 27-year-old
white male at 6X X Tchoupitoulas St on 13*® July 2015 at 01 : 00 hrs and again on

30" April 2016 at 03 : 00 hrs with attempted simple robbery (T4). Next, from the

85



feature suggestions offered by PRIVEE (T5), he selected the attribute disposition,
which shows the status of a particular incident. He observed that only one record
was open in 2015 but closed in 2016 (Figure 4.6¢). On inspecting further details, as
shown in Figure 4.6d, he found out that an incident of a runaway female juvenile
of age 17 was reported at 85X X Dinkins St on 26" February 2015, and the same
incident was closed through a supplemental report one and half years later on 7"
December 2016 (T4).

The researcher concluded that this is an example of identity disclosure where
individuals were identified using PRIVEE even when the addresses were partially
masked in de-identified datasets. He was also shown an earlier version of the PRIVEE
interface during the case study. He commented that the new changes improved the
rich functionalities of PRIVEE and added that this interface could help experienced

data custodians analyze disclosure risks and potentially find examples of disclosures.

4.8 Discussion

When plugged into the open data stream, PRIVEE can act as both a risk profiler
and a trusted informer that oversees risks while providing an appropriate level of
control to defenders for integrating their domain knowledge using an end-to-end
workflow. One of the lessons learned during this design study is that an interface
helping defenders evaluate disclosures should enable seamless communication across
sources and implications of risks while responding to the myriad definitions of privacy
relevance. PRIVEE is bootstrapped by a default view that quickly adapts to the
data defenders’ inputs, allowing them to leverage appropriate levels of control while
automating parts of the analysis process.

In its current implementation, one of the limitations of PRIVEE is scalability,

concerning the number of records of each processed dataset and the size of the seed
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input that is used for bootstrapping. We have limited the number of records to
100, 000 to avoid interaction latency.

There is also the need to incorporate greater automation in the selection of
privacy-relevant, personal datasets without manual intervention. During this design
study process, we learned that automation of this workflow is inherently challenging
as privacy-relevance is subjective and open data are noisy; hence, training a model
to mimic human judgment is difficult. Our approach of specifying a seed set outside
the PRIVEE workflow is an important methodological choice allowing us to focus
on the most vulnerable datasets and anticipated attack scenarios. Currently,
PRIVEE only assesses joinability risk between pairs of datasets. It is certainly
possible that there could be other scenarios like when multiple datasets are joined
progressively, the risks propagate through the links. However, based on the feedback
of our data privacy collaborator, we consider the risk scenarios handled in PRIVEE
to be the necessary first steps toward assessing more complex combinations and

variants of disclosure risks.

4.9 Conclusion
PRIVEE, the visual risk inspection workflow described in this design study, is a
first step towards allowing data defenders both the control and efficiency needed
to minimize disclosure risks from the joinability of open datasets. Through our
case studies with data privacy experts, we demonstrated a key takeaway that the
visualizations and interactions were effective in end-to-end exploration and diagnosis
of the actual disclosure of sensitive information or identity of individuals. As an
ongoing and future work, we will be exploring disclosure risks beyond joinable pairs.
We will further augment our workflow with intelligent and scalable data processing

capabilities in collaboration with big data experts. We also plan to conduct controlled
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studies to evaluate the usability of PRIVEE and its components with real-world cyber

defenders.
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CHAPTER 5

VALUE: UTILITY CALIBRATION WORKFLOW

5.1 Introduction

The linking of open datasets can create valuable insights for addressing specific
problems. For instance, the records of two companies’ customers can be combined
to identify overlapping records and reveal customers who have patronized both
companies. Similarly, the records of police arrests and court proceedings can be
merged to extract more comprehensive information about individuals included in
both datasets. The open data revolution, founded on the FAIR data principles, has
increased the accessibility of such datasets [35]. This growing accessibility can enable
researchers to discover new opportunities for joining open datasets to gain deeper
insights. However, the open data ecosystem can be considered a forest of datasets,
presenting a challenge in leveraging their value through dataset linking. Quantifying
the value gained from joining these datasets and selecting dataset pairs with higher
utility are complex tasks. Therefore, transparently evaluating the utility of various
open dataset combinations has become critically important.

To overcome these challenges associated with joining open datasets, we develop
a user-configurable utility metric that expresses the value of pairwise dataset joins
based on these datasets’ attributes and record space. This metric is then leveraged to
develop the VALUE framework and a web-based interactive visual interface, enabling
researchers to compare the utility of joinable open datasets and calibrate it. But
manually performing pairwise joins and evaluating their utility can be cumbersome
and time-consuming due to the sheer scale and complexity of the combinatorial
explosion that arises when dealing with a large number of datasets. For example, with

a group of 400 datasets, there can be up to 80,000 potential pairwise combinations,
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highlighting the need for automating the computing processes to evaluate the utility
of these combinations efficiently. While the JOSIE algorithm uses a similar automated
approach to identify joinable tables in large data lakes using set similarity techniques,
relying solely on automation may overlook valuable insights that can be gained
from the user’s input and background knowledge, making a human-centric approach
necessary [202]. Our approach enables interactive triaging of joinable dataset pairs
by human stakeholders (e.g., social science researchers) leveraging the combination
of a new utility metric with a visualization interface for distinguishing between the
most and the least useful joinable pairs.

In this chapter, we first understand the different join scenarios through
examples (Section 5.3). This understanding is then leveraged to contribute the utility
metric that can triage the joinable and useful dataset pairs from a large group of
datasets (Section 5.4). Next, we contribute the visual analytic framework VALUE
which researchers can use to evaluate the utility of the joined datasets in a transparent
manner (Section 5.5). Finally, we evaluate the algorithm and the VALUE framework
through a usage scenario that helps demonstrate their efficacy through real-world

datasets (Section 5.6).

5.2 Related Work
Evaluating the utility of joined open datasets has been a topic of considerable research
for various use cases [140, 203, 26]; and, there is a growing need for developing
robust metrics to quantify the usefulness of these joined datasets. Some research
works discuss the quality of a dataset based on either the structure of the data or its
content and then comment on improving its utility. For example, Ballou et al. first
discuss the quality of data based on its completeness and/or consistency [204]. This
paper proposes measuring completeness based on the presence of all elements and

consistency as uniformity across comparable datasets, followed by a trade-off analysis
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between these metrics to achieve the highest possible utility under a budget. But
these metrics alone may not be sufficient to guide the selection of the most useful
pair of joinable datasets from a large pool of open datasets.

Several other works have explored the challenge of balancing privacy and utility
in datasets. For example, Kenneally and Claffy proposed the Privacy-Sensitive
Sharing (PS2) framework to mitigate privacy risks while achieving utility goals
when releasing datasets [205]. PS2 consists of components such as authorization,
transparency, and access limitations that can help balance the privacy and utility
aspects of released datasets. Bhumiratana and Bishop developed an ontology-based
framework that enables formal and automatic communication between data collectors
and users to ensure privacy-aware sharing of datasets, despite maintaining the utility
of these datasets [206]. That said, privacy concerns may not always be relevant
in evaluating the utility of joined datasets, especially when joining datasets about
non-human objects. Moreover, while Noshad et al. proposed the Data Value Metric
(DVM) to assess the information content of large datasets for augmentation in specific
domains, this approach is limited to evaluating the utility of a single dataset rather
than a joined open dataset [207].

Recent research has focused on different approaches for identifying joinable
tables in large data lakes. For instance, Zhu et al. developed the JOSIE algorithm,
which uses a set similarity search approach with a cost model to enhance performance
over large data lakes [202]. However, an entirely automated approach may overlook
the nuances of a human-centered approach, which is the focus of our work. Gong et al.
developed the Niffler architecture, which finds joinable data tables over pathless table
collections without join information [208]. But this approach does not enable the user
to triage candidate datasets based on their utility. On the other hand, WarpGate,
a semantic join discovery method implemented in Sigma workbooks, first indexes

dataset columns and tries to find other datasets with similar columns [209]. Still, it
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provides a score about joinability without a transparent explanation and options for
exploration for the reasons behind it, which we attempt to explore through our visual
analytic framework. Our work is comparable to the PEXESO framework by Dong et
al., which converts the dataset columns into high-dimensional vectors and computes
the similarity between these vectors to identify joinable tables [167]. Nevertheless,
it does not quantify the utility of joining these datasets, which we attempt to do
through the utility metric, which a researcher can transparently evaluate in order to

update its components based on their background knowledge and expertise.

5.3 Understanding Join Scenarios
Understanding the various ways in which two datasets can be joined and the
adaptability of a utility metric to different join scenarios is crucial for researchers
seeking to gain insights from linking open datasets. Joining can be achieved through
intersection, union, master join, or concatenation, each with different implications for
the resulting dataset and its utility. The granularity of records, such as individual or
aggregated levels, can also impact these join scenarios. In this section, we delve into

these different scenarios and how they can influence the utility metric.

5.3.1 Intersection join
An Intersection join can be defined as the process of joining two datasets and
keeping only those records that have matching values in both datasets for a specific
combination of the join key attributes. This is one of the most common types of join
encountered, also known as Inner join. Let’s see an example of Intersection join.
Suppose we have two datasets, D1 (school records) and D2 (juvenile criminal
activity records). A snapshot of D1 and D2 have been shown in Figure 5.1a and 5.1b
respectively. Joining datasets D1 and D2 based on common attributes age, race,
sex, and zip, we observe that there is only 1 common record of age 14, race Asian,

gender F and zip 10012 (Figure 5.2a). We also observe extra information about this

92



age race sex zip age race sex zip crime
10 Black M 10012 14 Asian F 10012 larceny
14 Asian F 10012 17 Black M 10013 theft
12 White F 10011 11 White M 10021 battery
a  Dataset D1 b  Dataset D2

Figure 5.1 Snapshots of open datasets: (a) Dataset D1 shows the school
records while (b) Dataset D2 shows the records of a juvenile criminal activities
dataset.

individual that this individual has committed larceny. Thus, given the dataset D1,
we can follow this process to identify other datasets that can be useful when joined
with D1:
e Find datasets that have attributes common with that of D1 (like age, race,
gender, and zip)

e Find if the records are similar. Since we need exact matches, we need to find a
higher degree of similarity.

e Next, check if there is any other sensitive attribute revealed.

During the analysis of this join scenario, we discovered that record similarity
and common attributes play crucial roles in determining the utility metric. It also
became apparent that Intersection join is only practical for datasets with similar
records, thereby enabling us to recommend pairs of datasets with high utility scores
for Intersection join. This also highlights the need to set a defined range for the utility

score to classify it as either “high” or “low”.
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Join Results . age race sex zip crime

10 Black M 10012 NA

age race sex zip crime 14 Asian F 10012  larceny
12 White F 10011 NA

14 Asian F 10012 larceny 17 Black M 10013 theft
L 11 White M 10021  battery
avge race sex zip crime d age race sex  zip crime
10 Black M 10012 NA

10 Black M 10012 NA 14 Asian F 10012 NA
. 12 White F 10011 NA
14 |Asian| F 10012 larceny 14 Asian F 10012 larceny
12 White F 10011 NA 17 Black M 10013 theft
11 White M 10021 battery

Figure 5.2 Results from the Join Scenarios: (a) Intersection join (b) Master
join (c¢) Union join and (d) Concatenation

5.3.2 Master join

Master join can be defined as the process of joining two datasets and keeping the
records of either of the datasets and updating values or adding new attributes for
those records which have matching values in both datasets, for a specific combination
of the join key attributes. It is also known as Left or Right join in the SQL join
parlance. This join is mainly useful when we intend to find extra information about
the common records between two datasets.

If we perform a Master join on datasets D1 (Figure 5.1a) and D2 (Figure 5.1b),
we would get an output similar to Figure 5.2b. Here, all the records from dataset D1
are retained, and the value for the new attribute (i.e., crime) has been updated.

Given dataset D1, the process of finding datasets for Master join is similar to
that of Intersection join. Master join is preferred when the datasets have some similar
records, and either dataset is selected as the primary one. Though the primacy has
to be a user input, considering similarity as an essential constituent of the utility
metric, we can say that Master join can be recommended when a pair of datasets

have a medium range of utility score.
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5.3.3 Union join

A Union join can be defined as the process of joining two datasets, keeping the
records of both datasets and updating values for the common records, for a specific
combination of the join key attributes. It is also known as Full join in the SQL join
parlance. This join is mainly useful when we intend to keep the records from both
datasets but update the values for the common records.

If we perform a Union join on D1 (Figure 5.1a) and D2 (Figure 5.1b), we will
get an output similar to Figure 5.2c. Here, all the records from both datasets are
retained, and the value for the crime attribute has been updated for the common
record.

Given dataset D1, the process to find datasets for Union join is also similar
to that of the other joins. However, unlike Master joins, Union join does not need a
primary dataset since all the records will be retained. During our analysis, we realized
that when there is a medium to low similarity between the records of datasets, it could
be appropriate to consider a Union join. It is noted here that a Union join can only be
performed when datasets have the same granularity. If the granularity is mixed, like
having one individual and one aggregated record-level dataset, a Union join wouldn’t

make sense as it would create a joined dataset with mixed granularity.

5.3.4 Concatenation
Concatenation can be defined as the process of combining two datasets and keeping
all records. Unlike Union joins, no attribute value is updated in this case.

If we perform a concatenation on D1 (Figure 5.1a) and D2 (Figure 5.1b), we
will get an output similar to Figure 5.2d. Here, all the records from both datasets
are retained as it is.

Given dataset D1, the process of finding datasets for Concatenation is also

similar to that of other joins. But unlike Union join, Concatenation can still be
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performed if there are some common attributes and no similar records. Thus, a low

utility score can indicate a scenario for a Concatenation.

5.4 Calibrating Utility
Characterizing the join scenarios helped identify factors that need to be considered
for calibrating the eventual utility of the join outcomes. In this section, we first

summarize these factors and then we describe the algorithm.

5.4.1 Key factors impacting utility
Given a dataset D1, we observed that the following factors could be used to quantify
the utility of joining it with another dataset:
Shared attributes in a dataset pair: The number of shared attributes between
a pair of datasets is one of the important factors for determining the utility of the
joined dataset. If two datasets do not share any shared attribute, there is no benefit
in joining them through any join.
Degree of similarity between the records of the shared attributes: The
degree of similarity can be an indicator of the utility of the joined datasets. We
observed that datasets with similar records are useful while performing the joins,
while datasets without any similar record can be used for concatenation.
Number of known shared attributes generally used for linking: Through our
prior experience, we have observed that certain attributes are commonly employed
to join datasets. We start with a list of known attributes like age, gender, race, and
location. However, users can update this list based on their background knowledge
and expertise. It also serves as a feedback mechanism in our human-in-the-loop
approach, thus enabling the user to modify the inputs and transparently evaluate the
utility of joining datasets.

While exploring other factors, we hypothesized that the number of exact

matches between datasets would determine the join type. But after conducting some
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experiments, we found that this hypothesis didn’t always hold true. For example,

even a single common record between datasets D1 and D2 could lead to a meaningful

Intersection join, revealing sensitive information about an individual. Therefore, we

decided not to incorporate it as a factor in our algorithm.

5.4.2 Utility metric

Algorithm 1 Utility Metric Algorithm

Require: Datasets D, Dy

Require: User supplied list of attributes generally used for linking (agl)

Require: cutof f Length < 200

1:

2:

10:

11:

12:

13:

14:

15:

16:

f(D;) < attributes of D;
sa < f(D1) N f(Ds)
sa_ratio < |sa|/{f(Dy) U f(D3)}
agl_ratio < (agl N sa)/|agl|
simNum, simCat < [|, ][]
for each attr in sa do
Z; < dropN A(D;.attr), where i = 1,2 > Keep only values
if type(attr) = "numeric” then
Z; < Z;|: cutof f Length], where i = 1,2
sim < cosineSimilarity(Zy, Zs)
AddItem(simNum, sim)
else
Z; < sort(Z;, ascending), where i = 1,2
Z; < Z;|: cutof f Length], where i = 1,2
C « all Z;-Z5 combinations with one element from each

temp « [|
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17: for each comb in C do

18: sim < InDelSimilarity(comb|0], comb[1])
19: AddItem(temp, sim)

20: end for

21: simMean < Mean(temp)

22: AddItem(simCat, simMean)

23: end if

24: end for

25: sim_ratio < Average(Mean(simNum), Mean(simClat))
26: w <« [20, 20, 60] > Weights

27: UtilityScore < (w[0] * sa_ratio) + (w[1] x agl_ratio) + (w[2] * sim_ratio)

Algorithm 1 outlines the logic for our proposed utility metric. It is calculated
as the weighted sum of three scores: sa_ratio, agl_ratio, and sim_ratio, reflecting
the factors we identified as essential in calibrating the utility of joining datasets.
Specifically, sa_ratio represents a normalized count of the shared attributes (sa)
present while agl_ratio represents a normalized count of the attributes generally used
for linking (agl) present in the shared attributes between datasets D; and Dy. To
ensure consistency, each of these scores has been normalized to return a value between
0 and 1.

stm_ratio quantifies the similarity between the values of the shared attributes
of the datasets. If all the values for a shared attribute are numeric, we calculate their
cosine similarity using Python’s scikit-learn package [210, 211]. However, if the values
are categorical, we first generate all possible combinations of string values by selecting
each value from records of the categorical attribute of each dataset. Then we calculate
the similarity between each combination string using normalized InDel similarity from

Python’s Levenshtein package [212]. InDel distance is an edit distance between two
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strings that calculates the number of insert/delete operations required to convert one
string to another. The time complexity is O(m % n), where m and n are the number
of characters in each string. This distance is then normalized over the maximum
possible distance between two strings of size m and n, respectively. The normalized
InDel similarity is then calculated as 1 — (normalized InDel distance). Finally, we
compute the average of the categorical and numerical attributes’ similarities to arrive
at sim_ratio.

We use an edit distance-based similarity calculation method for finding the
similarity between each record string. This method is preferable over token-based
or sequence-based similarity calculations since the order of records does not affect
our results significantly. We have considered several candidate algorithms for
calculating the similarity between strings, including Levenshtein [213], InDel [214],
Jaro-Winkler [215], and Hamming distance [216]. Hamming distance overlays one
string over another and finds the number of places where the strings vary. While
this method is effective for comparing strings of equal length, it is not well-suited
for our purposes since the strings in our datasets can vary in length. Levenshtein
distance calculates the number of operations (insert/delete/substitution) required to
convert one string to another. Jaro-Winkler distance is similar to Levenshtein, but
the substitution operation for close characters is given less weightage than that of far
characters. InDel is a similar algorithm, but only insert and delete operations are
allowed. We decided to use the InDel algorithm for string similarity calculation over
Levenshtein and Jaro-Winkler algorithms. This choice was based on the fact that, in
our current context, the substitution of characters may not be a reliable indicator of
the level of similarity or difference between two strings of various types.

The final UtilityScore is the weighted sum of these ratios, where more weight
is given to the similarity between the attribute records. This score ranges between

[0,100], thus making it easier to categorize high and low similarity, implementing
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the insights gained while characterizing the join scenarios (Section 5.3).  For
computational efficiency, we have set a cutoff limit of 200 records for columns while
calculating their similarity. Though this does not affect smaller datasets, for larger
datasets, we can remove this constraint based on the availability of computational

resources.

5.5 Framework for Transparent Evaluation of Utility
The algorithm for the utility metric can be best evaluated when paired with visual
analytic interventions that a researcher can use to explore different open datasets and
the utility of joining them. In this section, we first define the tasks for the VALUE
framework and then discuss the visual analytic solution required to implement this

framework on a web-based interface.

5.5.1 VALUE framework

The foremost challenge while assessing the utility of joining open datasets is to
compare and triage different dataset pairs based on the utility metric. After that,
researchers need to update the metric by considering their background knowledge,
expertise, and analysis of the joined datasets. Centered around these steps, the tasks
of the VALUE framework are as follows:

T1: Inspecting utility scores: The joinable groups of datasets can be further
analyzed by ranking each pairwise dataset combination according to their utility
score. This task relates to triaging dataset pairs based on their utility score. A
dataset pair with a higher utility score will be more useful when joined based on
some common attributes than one with a lower utility score. By identifying the most
useful dataset pairs, researchers can focus their efforts on those with the highest
potential for generating meaningful insights.

T2: Incorporating user inputs to utility score: The utility score of a joined

dataset is influenced by the attributes commonly used to link two datasets, and this
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Figure 5.3 Inspecting utility of joining real world open datasets through
the VALUE interface: (a) A researcher selects a cluster of joinable open
datasets based on relevant keywords. (b) Then all possible pairwise combinations of
datasets are presented for the transparent inspection of the utility scores. Dataset
pairs are ranked based on the utility score, and the user-selected attribute (race)
present in the common attributes is highlighted for each pair. (¢) Finally, the
researcher can join the most useful pair and analyze the result through color-coded
record categories. Numerical attributes are colored through an orange interpolation,
while categorical attributes with less than ten categories are assigned distinct colors,
and those with more than ten categories are colored through a grey interpolation.
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evaluation can benefit from a human-in-the-loop approach. While we begin with a
preliminary list of such attributes, a researcher can supplement this list based on
their background knowledge and expertise. This task relates to the modification of
the list of attributes generally used for linking, which can affect the utility score
and ultimately lead to a meaningful join operation. By involving human expertise
and feedback, we can ensure that the list of attributes generally used for linking is
comprehensive and effective in capturing the most important aspects of the data.
T3: Analyzing joined records: After joining the datasets, a researcher can
perform a detailed analysis of the joined records to determine their utility. This
task is necessary to extract valuable insights from the linked data and is essential for

the success of a human-centered linked data analysis framework.

5.5.2 Visual analytic solution

The initial objective of the VALUE framework is to identify groups of joinable open
datasets, and it is accomplished using two key visual analytic components. The
first component is a search box that allows the user to filter datasets based on
relevant keywords. The second component is a high-dimensional projection of the
datasets based on their similarity in their attribute space (Figure 5.3a). In order
to achieve this, we first transform the dataset attributes into high-dimensional word
embedding vectors. These vectors are then projected onto their two-dimensional (2-D)
space using the t-SNE dimensionality reduction algorithm [183]. Then we apply
the DBSCAN algorithm to identify and group datasets with similar attributes into
clusters [186]. Datasets that belong to the same cluster are color-coded for easy
identification. Furthermore, each cluster is ranked based on its intra-cluster distance
using the Silhouette coefficient [191], and individual datasets within the cluster
are labeled accordingly. This approach allows the researchers to comprehend the

relationships between datasets and identify joinable groups.
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Once a researcher selects a group of joinable datasets, all possible pairwise
combinations of datasets are displayed for further inspection (Figure 5.3b). Each
dataset pair is visually represented using a combination of items, such as the dataset
names, rectangular boxes showing the common attributes between these datasets, and
their utility score. The utility score is represented using a horizontal green bar where
the color green represents the score in a range of 0-100. This abstraction provides
a convenient way for the researchers to understand the scores at a glance, but they
can also obtain exact score information by hovering over the bar. The choice of the
color green is purely for semantic reasons. The similarity between the records of
common categorical and numerical attributes is also shown with two vertical green
bars. These bars’ orientations have been reversed to differentiate them from the
main utility score. Thus, this design aids the transparent evaluation of the utility
scores (T1). Furthermore, this view also enables the researcher to augment the list
of the attributes generally used for joining. If any of these attributes are present
in the common attributes, they are highlighted in a distinct color (royal heath) to
indicate their significance. This human-in-the-loop approach helps to improve the
utility score based on the inputs from the researcher (T2).

As learned during the characterization of join scenarios, we recommend
Intersection join for dataset pairs with high utility scores. To facilitate this, the
button for Intersection join is highlighted, but the researcher has the option to choose
any other type of join. The joined datasets are visualized through a customized
Navio implementation, where each attribute is represented by a stacked bar chart
displaying the distribution of different categories for that attribute (Figure 5.3¢) [217].
For a numerical attribute, the records are represented using a sequential scheme of
colors. The null values, shown in light pink, help to understand the completeness
of the results. This colored categorization of the joined dataset’s records helps a

researcher understand its composition and analyze them for utility (T3). Users can
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also download the joined dataset for further investigation. The web-based interface
has been developed using a combination of Python and Flask for the backend and

Node.js, React.js, and JavaScript for the frontend.

5.6 Usage Scenario

The performance of the algorithm for utility metric and the VALUE framework can
be evaluated in multiple ways. A systematic review by Isenberg et al. observed
that Qualitative Result Inspection is one of the most popular evaluation methods
for algorithms and visualization interfaces [218]. Hence, in this section, we describe
a usage scenario to demonstrate the how the visual analytic interface that embeds
the utility metrics can help in distinguishing between the highly usable and the least
usable pairwise join outcomes.

Consider a scenario where a researcher at a government laboratory is analyzing
local election results obtained from open datasets to gain insights that could inform
policy decisions or contribute to a broader understanding of the political landscape
in the area. The findings of the study could be crucial for stakeholders such as
policymakers, government agencies, or local communities in formulating informed
decisions. She began by browsing several county-level open data portals to obtain
the necessary data. However, she found it challenging to determine which datasets
to combine to form a complete picture of the election results. In search of a solution,
she turned to the VALUE interface. After conducting a search on elections, the
interface generated several clusters of data related to election results. To make her
selection, she carefully analyzed the projection plot and ultimately chose the first
cluster (Figure 5.3a).

This action generated all the possible pairwise dataset combinations from this
cluster and ranked them according to their utility score (Figure 5.3b). The researcher

analyzed the dataset pairs and observed that the datasets 2010 General - Election
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Results by precinct (complete eCanvass dataset) and 2010 Primary - Election Results
by precinct (complete eCanvass dataset) have a high utility score of 82.77 (T1). These
are the datasets for the general and primary election results of 2010 from King County,
WA. Since this pair has a high utility score, the interface suggested an Intersection join
between the datasets. She also observed that this pair included one attribute (race)
that was included in the default list of generally used attributes (T2). Though she
did not update this list, she selected all the attributes and performed an intersection
join.

On joining these datasets based on all the common attributes, the researcher
observed that the joined dataset contains 162,977 records (Figure 5.3c). She analyzed
these records using the VALUE interface and understood that the joined dataset gives
her the combined election results for all the candidates at each precinct, both at the
primary and general election levels (T3). She further downloaded the joined dataset
and saved it for her research purposes.

Further, the researcher was curious to understand if the utility metric could
distinguish between the most useful and the least useful dataset pairs. Hence, she
selected the lowest ranked dataset pair: 2010 Primary - Election Results by precinct
(complete eCanvass dataset) and Election night precinct results - November 2018.
Joining them based on the common attributes [‘race’, 'precinct’] yielded no record.
Thus, the researcher concluded that the utility metric, when used in conjunction with
the VALUE framework, can help to find joinable and useful datasets from the open

data ecosystem.

5.7 Discussion
The utility metric can be considered a novel method that can be used to assess the
utility of joining open datasets with a human-centric perspective. In our continuous

efforts to improve and refine the algorithm behind the utility metric, we aim to unlock
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even greater insights into the potential of joining open data. We also plan to use the
outcomes from the utility metric to train a machine-learning model to classify the
usefulness of the joins.

The insights gained from our analysis of the join scenarios represent a crucial
foundation for this work. By leveraging the interface for the VALUE framework,
we could put some of these lessons into practice, emphasizing the critical role of
visual analytic interventions in solving this problem. Although the current interface
prototype is designed to work with approximately 400 open datasets, our internal
testing has indicated that it can be scaled up significantly. Also, while we did
need to implement a cutoff length for larger datasets, we are currently exploring
strategies to overcome this limitation, such as increasing our computational resources.
Additionally, we are also working on a workflow that can regularly fetch datasets from
different sources and integrate them with the VALUE framework, thus enabling us
to keep pace with the ever-evolving landscape of open data.

We recognize that there is always room for improvement in the interface
components of the VALUE framework, and we are committed to incorporating
feedback from a diverse range of users. To this end, we plan to conduct case studies
with domain experts and undertake more controlled user studies that will enable us

to collect valuable feedback about the interface and the algorithm.

5.8 Conclusion
The utility metric algorithm, presented in this chapter, is a first step towards
quantifying the utility of joining open datasets. It considers multiple factors like the
similarity between records, shared attributes, and a user-supplied list of attributes to
develop a score that can help identify the most useful pair of datasets from a group of
joinable datasets. The lessons learned during this development also helped develop the

VALUE framework, which, when used in conjunction with the web-based interface,
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helps in the transparent evaluation of the utility score. This human-in-the-loop
approach helps researchers, data scientists, and analysts to make more informed

decisions and leverage the full potential of open datasets.
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CHAPTER 6

LINKLENS: WORKFLOW FOR BALANCING PRIVACY AND
UTILITY FACTORS IN MULTI-WAY JOINS

6.1 Introduction

Open datasets across diverse domains such as health, economics, and politics are
readily accessible in open data repositories. Users frequently aim to join datasets
from various domains to extract insights spanning these diverse areas. For example,
aggregating election results from different regions can reveal voting trends. The
joining process can involve various datasets and different types of joins; for instance,
election result datasets from multiple years may initially be concatenated and then
intersected with infrastructure project datasets to analyze development trends under
different elected officials. However, the sheer volume of potential combinations can
overwhelm users. For instance, with a group of 150 datasets, there could be over
11,000 pairwise combinations and over 550,000 three-way combinations (Figure 6.1).
Moreover, each three-way combination can be arranged in three ways, leading to
different outcomes, which effectively creates a combinatorial explosion.

Moreover, such dataset join can risk identity or attribute disclosure, where a
data subject’s exact identity or identifiable attributes may be revealed. For instance,
despite the Australian Department of Health releasing de-identified data about 2.9
million patients, researchers managed to re-identify patients and their doctors within
a few months by leveraging other open demographic information [13]. In another
instance, 91% of all taxis operating in NYC were identified using de-identified NYC
taxi open data and other open taxi datasets [140]. Similarly, in our previous work, we
showed several instances where individuals were identified and sensitive information
was revealed by linking criminal record datasets [25]. Additionally, practitioners

commonly adhere to the “release-and-forget” model, where open datasets, once
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Figure 6.1 Process Overview: (a) - (f) illustrates the process of discovering
joinable open datasets and evaluating the balance between utility and privacy. Even
with basic assumptions and considering only pairwise combinations, a mere 150
datasets can yield over 731 million combinations. Including multi-way join can well
lead to a combinatorial explosion. Visual analytics can aid in navigating this
complexity, making it easier to balance privacy and utility factors when joining open
datasets.

released, are not systematically reviewed for potential disclosures in light of newly
released datasets [51]. Consequently, consistent scrutiny of the privacy implications
for data subjects when combining open datasets is crucial.

Balancing utility and privacy encompasses a broad spectrum of scenarios, from
scenarios where dataset utility is maximized without regard to disclosures to those
where utility is minimized by removing all potential disclosure records. Users can
opt for either extremes or any intermediate scenario. This aligns with the broader
concept of trade-off scenarios, defined as “How much achievement on objective 1 is the
decision-maker willing to give up in order to improve achievement on objective 2 by
some fixed amount?” [219]. As evident from the earlier examples, employing different
join types (e.g., intersection, union, or master join) compounds this combinatorial

complexity, thus making it difficult for a user to compare all the scenarios and make
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an informed decision. As depicted in Figure 6.1, with basic assumptions, just 150
datasets can generate approximately 731 million combinations.

Visual analytics can play an important role in addressing the challenges posed
by combinatorial complexity in dataset exploration and facilitating the analysis of
disclosures. For instance, UrbanForest utilized a heatmap-based design to illustrate
the relationships between different datasets and attributes, aiding users in selecting
relevant datasets more efficiently [41]. PRIVEE developed a visual analytic workflow
to identify joinable groups of open datasets, triage them based on their joinability
risk, and finally evaluate disclosure risk at the record-level [26].

In this context, we first contribute a novel human-in-the-loop visual analytic
system, LinkLens, to systematically balance the privacy risks and the utility of
joinable open datasets. Users, like data owners and custodians, can navigate joinable
datasets from over 100 open data portals, analyzing their utility while simultaneously
inspecting them for potential disclosures. This inspection facilitiated through our
second contribution, the development of utility and joinability risk scores that is
specifically designed for multi-way joins. Visual analytic interventions in LinkLens
are designed to guide users in making context-aware decisions about risk tolerance
and the perceived utility of joinable datasets, ensuring the discovery of useful open
datasets with reduced risks of disclosures. In this chapter, we begin by a discussion
of the goals and the visual analytic tasks for LinkLens. Next, we describe how we
map these goals with the interface design and demonstrate the efficacy of LinkLens

through a usage scenario.

6.2 Visual Analytic Goals and Tasks
Manually discovering, combining, and evaluating datasets for both utility and
disclosure at the metadata and record levels can be a challenging task. In contrast,

during our research, we realized that completely automating this process may be
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Figure 6.2 LinkLens workflow: This workflow enables users to discover joinable
open datasets aligned with their interests, compare multi-way join options, and
assess the outcomes based on utility and potential disclosures. Interactive
visualization enhances this process by guiding users through each step of the
workflow.

practically infeasible as human intervention is required at multiple stages of dataset
exploration, interpretation, and evaluation. To address this challenge, we developed
LinkLens, a visual analytic workflow designed to help the users balance privacy and
utility while performing multi-way joins of open datasets (Figure 6.2). In this section,
we describe the LinkLens workflow through the high-level goals and visual analytic
tasks required to achieve these goals.

G1: Discover joinable datasets: The first goal of the LinkLens workflow
is to identify open datasets that can be combined to extract valuable insights.
This involves considering various join combinations, including pairwise, three-way,
four-way, and more complex scenarios. Additionally, some datasets may exhibit
transitive joinability, meaning they lack direct shared attributes but can be connected
through a third dataset. These situations increase the complexity of this goal, which
may be achieved through these tasks:

T1: FEaplore dataset cluster signatures: Since the presence or absence of
shared attributes significantly influence dataset joinability, clustering datasets by their
attribute space is a promising approach for finding joinable open datasets. Datasets
with similar attribute spaces are more likely to be joinable. However, understanding
the specific nature of attributes within each cluster is essential for identifying potential

join candidates. This task involves analyzing the distribution of attributes within
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each cluster, enabling users to identify datasets that closely align with their research
objectives.

T2: Select attributes of interest: In our previous research, we have identified a
list of attributes which are frequently used to find datasets that can potentially reveal
sensitive information. These quasi-identifiers, such as age, race, gender, location,
while individually insufficient for unique identification, can collectively help identify
a data subject, thus leading to identity and attribute disclosure. If selected by users,
these attributes can highlight datasets at higher risk of disclosure when joined with
others. By considering such dataset combinations, data defenders can evaluate the
trade-offs between the utility and privacy of a dataset join.

T3: Select joinable dataset combinations: Understanding the joinability

between datasets within and across clusters can help in selecting dataset combinations
that effectively support user objectives. This task revolves around combining two or
more datasets, which can broaden the scope of the final joined dataset, potentially
providing a larger volume of data. The number of datasets selected for joining is a
critical factor in generating meaningful and informative results, encompassing data
from multiple sources and potentially diverse domains.
G2: Compare multi-way join options: Joining two datasets results in a single
combination, as the order of the join does not affect the outcome. But joining three
datasets can yield three distinct permutations since order of the join can lead to
different outcomes. The number of possible permutations increases with the number
of datasets involved. Thus, for higher-order multi-way joins, it is important to
compare different join options which can be achieved through these tasks:

T4: Fxplore join cardinality: While adding more datasets to a join can
potentially increase the volume of data, it also carries the risk of diluting data quality
due to the inclusion of irrelevant information. Therefore, it is important to carefully

evaluate different join options before combining the datasets. This task involves
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comparing the benefits and drawbacks of 2-way, 3-way, and n-way joins to determine
the most appropriate approach for the user’s specific needs.

T5:  Triage multi-way combinations based on utility and joinability risk:
Consider a four-way join involving datasets from a specific domain with a few shared
attributes. Even within this scenario, different join combinations may yield varying
levels of utility and joinability risk. Therefore, it is essential to carefully evaluate and
prioritize various multi-way join options before selecting a join strategy.

T6: Select join strategy: A group of datasets can be joined in various ways

depending upon the type of join. For example, in a four-way join, first two datasets
can be joined using intersection join on attributes al and a2. The resulting dataset
can then be joined with a third dataset using a union join on attributes a3 and
a4, based on user requirements. This process can continue with the fourth dataset,
employing different join types and shared attributes. Modifying any join type and
shared attribute may result in a different join outcome. Hence, selecting a proper
join strategy becomes a very important task in this workflow.
G3: Evaluate join outcome: The ultimate goal of the LinkLens workflow is
to evaluate the join outcome and assess its suitability for further use. Analyzing
the records to determine their utility in fulfilling user requirements is an important
takeaway from this workflow. Moreover, it is equally important to evaluate these
datasets for potential privacy risks before exporting them. This goal relates to the
balancing act between utility and privacy of the joined dataset and can be achieved
using the following tasks:

T7: Assess utility of join outcome dataset: Users seek to determine if a specific
join strategy results in a dataset useful for their research needs. This can be done by
analyzing the distribution of the records in this dataset and ascertaining if they really
generate some useful information. This task entails evaluating the utility of the join

outcome dataset based on the data distribution at the record level.
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T8: Inspect join outcome for possible disclosures: Any evaluation of the
join outcome would be insufficient without examining it for potential disclosures.
Exporting a dataset with potential vulnerabilities can lead to sensitive information
leaks within the user’s pipeline. To mitigate these risks, this task focuses on examining

the join outcome for potential disclosures at the record level.

6.3 Design Methodology

The design of LinkLens is motivated by the transparent explanation and the
evaluation of the utility and risk assessment process. In order to do that, we
implement a web-based interactive interface that allows users to discover joinable open
datasets, compare different join options and evaluate the joined datasets for utility
and possible disclosures. This interface is developed using Python and Flask for the
backend services while the front-end was developed using Javascript frameworks like
React.js and D3.js. In this section, we provide an overview of the design requirements
required for realizing the visual analytic goals and tasks of the LinkLens workflow.

Datasets profiling at the metadata level: As a part of our previous
research, we collected approximately 5400 open datasets containing various combi-
nations of popular quasi-identifiers like age, gender, race, location and others. After
multiple levels of filtering, we selected a set of 426 datasets which contain data about
human subjects and could be vulnerable to sensitive information disclosure. These
datasets serve as the input to LinkLens and we have profiled them based on their
record granularity, number of records, and attributes. The landing page for LinkLens
allows users to select attributes of interest from the quasi-identifiers and filter results
by record granularity.

Exploring joinable datasets: To fulfill G1, LinkLens clusters joinable
datasets and represents them using a set of visualizations including a projection plot

and a group of bar charts. Datasets within the same cluster may have stronger
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joinability, making helpful for identifying potential join candidates. However, mouse
interactions enable users to explore joinability both within and across clusters,
ensuring the search is not limited to a single cluster. Although LinkLens automates
dataset grouping, the visualizations, especially the bar charts for each cluster, help
users transparently understand the reasons influencing cluster formation.

Triaging join options: LinkLens automatically calculates the possible join
permutations based on the number of datasets selected. These permutations are
ordered by utility, allowing users to avoid manually reviewing all options before
choosing a join strategy. Visual cues indicate the utility and joinability risk for each
permutation, as well as the shared attributes between datasets. This automated,
human-in-the-loop design helps users to evaluate a large number of join options and
make an informed decision about their join strategy.

Inspecting joined dataset: After selecting a join strategy using a specific
permutation of datasets, join key and join type, users need to inspect the joined
datasets at the record level to ensure they meet their research needs. LinkLens
shows the distribution of categories for each attribute present in the joined datasets
in a compact format, allowing users to quickly understand the data distribution. A
separate table shows the possible disclosures so that the users can review them before
exporting the data for further use. These visual analytic cues help users to compare
the joined dataset’s utility against the possible disclosure risk and make an informed

decision.

6.4 Discover Joinable Datasets (G1)
Users need to understand the degree of joinability between datasets in order to
make a decision about selecting datasets for join. Hence, the design requirements
for addressing tasks T1, T2 and T3 are to develop clustering methods and use

visualization cues that are responsive to user-defined attributes of interest along with
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transparency in explaining cluster signatures. This enables the users to create mental
model of the joinability between different datasets and make a choice toward selecting
groups of datasets of their choice. In this section, we first describe the clustering
methods for finding joinable datasets and then describe how our design choices help

users to understand the reason behind formation of these clusters.

6.4.1 Clustering methods for finding joinable datasets

Converting Data Attributes to Word Embeddings: As pointed out earlier,
the joinability of two datasets depends on the shared attributes. Therefore, datasets
with similar attributes are likely more joinable. But attribute names in open
datasets are often noisy and inconsistent, making it difficult to perform a binary
search for specific attributes. We address this by focusing on the idea that similar
attribute names can reflect the semantic similarity among datasets sharing a similar
context. To achieve this, we utilize a word-embedding approach that captures both
joinability and semantic similarity. Word embeddings are real-valued, fixed-length,
dense representations that capture lexical semantics [178, 179]. We transformed
the data attributes into their word embedding form using Python’s spaCy library,
generating a vector representation for each dataset’s attribute space [180]. Vectors
with smaller distances between them indicate datasets with similar attributes and,
thus, greater joinability. We use cosine similarity to measure the similarity between
these vectors [181, 182].

Projecting the datasets and finding clusters: Each dataset is now represented
by a vector with over 300 dimensions. However, comparing datasets in a 2-D or
3-D plot is difficult due to the high dimensionality. Therefore, we used the t-SNE
dimensionality reduction algorithm to transform these high-dimensional vectors into
two-dimensional representations [183]. A 2-D projection alone may not effectively

reveal dataset groupings, so we tested clustering algorithms like KMeans [184],
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DBSCAN [185, 186], Birch [187], and OPTICS [188, 189]. After a thorough analysis
of cluster quality and density scores, we chose the DBSCAN algorithm. This method
provided the most distinct and meaningful clusters in our experiments, enhancing our
ability to identify joinable datasets.

FEvaluating the clusters: There can be multiple groups of similar or joinable
datasets, leading to the creation of several clusters. Assessing all these clusters can
be difficult for a user, so we used cluster evaluation techniques to prioritize them.
One such metric is the Calinski-Harabasz Index, which is defined as the ratio of
between-cluster dispersion to within-cluster dispersion. Here, dispersion refers to the
sum of squared distances between samples and their cluster’s barycenter [190]. A
higher score indicates better cluster separation and formation. We conducted an
experiment to compare this metric with other metrics like the Silhouette Score [191]
and the Davies-Bouldin Index [192]. The Calinski-Harabasz Index was selected

because it efficiently guided users in identifying meaningful, joinable datasets.

6.4.2 Dataset joinability view

We designed Dataset Joinability View (Figure 6.3) to give users an overview of all
available datasets, allowing them to explore signatures and patterns (T1) and select
a set of joinable datasets (T3) that align with their interests. LinkLens automatically
highlights the popular quasi-identifiers selected by the users (T2) in order to augment
the decision making process. The components of this view are as follows:

Joinable groups of datasets: LinkLens represents the datasets using a 2-D
projection plot where each dataset is represented by a grey circle. Datasets positioned
closer to each other in this plot are similar in their attribute space. While
the initial version of this plot used color to differentiate between the clusters of
datasets, we now use only grey to denote datasets since they are already distinctively

clustered (Figure 6.3a). Hovering over a dataset provides additional information, such
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Figure 6.3 Dataset Joinability View: (a) LinkLens clusters available datasets
based on their similarity in attribute space, and (b) bar charts display the frequency
of common attributes, explaining the cluster formation. (¢, d) Hovering over the
cluster bar chart highlights the corresponding group of datasets (shown in dark
green), and vice-versa. (e) Clicking on a dataset allows users to explore and select
potential join pathways.
as the dataset name, the open data portal it belongs to, and popular domain tags
from their open data portal. The size of the dots indicates the number of records in
each dataset, helping users determine if the dataset is large enough for their research
purposes. This information collectively helps the user select a starting dataset.
When a user hovers over another dataset, a dotted line appears between the
two datasets, showing the number of shared attributes. This visual cue assists in
selecting the next dataset for a multi-way join. Users can repeat this process multiple
times to create a joinable dataset combination (T3) (black connected lines as shown
in Figure 6.3e). That said, if the user selects specific attributes of interest, datasets
containing these attributes are highlighted using a darker shade of grey, aiding the
decision-making process based on their interests (T1).

Transparent explanation of joinability: As mentioned earlier, the Calinski-

Harabasz Index is used to rank the clusters, thus aiding in a more effective explanation
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of the reasons behind their formation. Since the highest-ranked cluster in this
method is the most closely-knit, the datasets within it are more likely to be joinable.
Therefore, we prioritize this cluster for users, allowing them to explore its joinability
first. Hence, for each cluster, we display a bar chart showing the most frequent
attributes of that cluster (Figure 6.3b). This helps users understand the signature of
a particular cluster and understand if aligns with their interest (T2). Attributes of
interest selected earlier are highlighted in the bar chart using the same darker shade
of grey (T1).

The projection plot and bar charts are interlinked through mouse interactions.
Hovering over a bar chart temporarily highlights the datasets in that cluster using
a distinct green color. Similarly, drawing a lasso around a group of datasets in the
projection plot will highlight and focus on the relevant bar chart(s). For example, in
Figure 6.3, Cluster 2 has been highlighted through the projection plot (Figure 6.3¢)
and the relevant bar chart has been highlighted on the right hand side (Figure 6.3d).
All these interactions together contribute towards a better explanability of the reason

behind the formation of the clusters.

6.5 Compare Multi-way Join Options (G2)
After selecting a set of datasets, the next step in the LinkLens workflow is to compare
different join cardinalities (T4), rank the dataset combinations based on different
metrics (T5) and then develop a join strategy (T6). This is done through the
Join Comparison View where users can compare different dataset combinations of
varying cardinalities and then select a join strategy that gives the highest utility with
the lowest possible joinability risk. In this section, we first discuss the algorithms
for generating dataset combinations of different join cardinalities, utility scores and
joinability scores, followed by how all of them are used together with different visual

analytic interventions to form the Join Comparison View.
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6.5.1 Metrics for utility and risk comparison
Calculating the possible join combinations: A multi-way join is an operation
that combines two or more datasets into a single, unified outcome. The order of
combining datasets within a multi-way join can vary, thus, leading to multiple possible
pathways to achieve the final outcome. For example, while joining datasets Dy,
Dy and Dj, the pathway ((D; X Dy) X D3) and (D; X (D X Dj3)) would yield
different outcomes, since the datasets in the parenthesis are joined first. To determine
the number of distinct pathways for performing a multi-way join, we can frame the
question as follows: “In how many ways can you sequentially join N datasets, where
the order within the innermost parentheses doesn’t matter, but the order of subsequent
joins does matter, and the order of joining two results of equal size doesn’t matter?”
We conducted experiments to determine the number of possible pathways for
multi-way joins and found that it closely resembles the Catalan numbers [220, 221].
In this context, the number of ways to perform pairwise joins on N datasets where
order matters is represented by the Catalan numbers. Mathematically, it is defined

| (2N)!

CtN) = (N + 1)l % N

(6.1)

Extending upon this, we propose that the number of possible join pathways given a

certain number of datasets (N; N >= 3) is as follows:

MW (N) .

(6.2)

The logic behind this formula can be explained as follows: We start by selecting two
datasets out of N to join, which can be done in ¥, ways. This initial step is crucial
as every pathway starts with joining two datasets. After this initial join, we are left
with NV —1 units to join (N — 2 original datasets plus the one resulting from the initial

join). The Catalan number C't(/N —1) counts the number of ways to parenthesize and
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order these remaining N — 1 joins, as each set of parentheses represents a pairwise
join operation. However, the product of YOy and Ct(N — 1) initially overcounts the
distinct combinations because the order in which the two initial pairs are formed does
not matter (for example, (D; X Ds) X (D3 X Dy) is the same as (D3 X Dy) X (D; X
Dy)). To correct this overcounting, we divide by 2!, which accounts for the number
of ways to arrange the two resulting datasets after the initial pairwise joins. A list of
possible join pathways at different join cardinalities (N = 2, N = 3, N =4 ...) can
be found in the supplementary materials.

Calculating utility score and joinability risk:

Algorithm 2 Utility and Risk Metric Algorithm
Require: pathways: All possible pathways

> Example: [[(D; X D) X Ds], [D; X (Dy X D3)] ...
> D, is each dataset
Require: aoi: User supplied attributes of interest
1: utilityScores, riskScores < [, ]
2: for index, pathway in enumerate(pathways) do
> : Pathway : (D; X Dy) X Dj
3: columnsNames, columnsData,
4: columnsTypes < process Pathway(pathway)
5: f(D;) < attributes of dataset D;
6: sa <+ (N, f(Dy) > n = 3 in this example
7 allA < U, f(D;)

8: saRatio < |sa|/|allA|

9: aoiRatio < |aoi () sa|/|aoi]
10: simRatio < 0
11: riskScore < 0
12: counter < [0,1,...,n — 1]
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13: for cr in counter do

14: if cr # 0 then

15: stmRatioCr, riskScoreCr

16: + scoreCalculationCr(0, ct, columnsNames,
17: columnsData, columnsTypes,

18: aot)

19: stmRatioCrMean <« m%

20: stmRatio <— simRatio + M

21: riskScore < riskScore + M

22: end if

23: end for

24: w < [20, 20, 60] > Weights

25:  wtilityScore < (w[0] * saRatio) + (w[1] * aoiRatio) + (w[2] * simRatio)
26: utilityScores < utilityScores + [utilityScore]

27: riskScores < riskScores + [riskScore]

28: end for

return utilityScores, joinability RiskScores

In our previous work, we have developed algorithms to calculate the utility
score [27] and joinability risk [26] for a pairwise combination of datasets. But in
multi-way join, each join pathway may contain more than two datasets and the order
of these datasets will determine both the utility and the joinability risk of the pathway.
Therefore, we have extended and combined these algorithms to calculate the utility
score and joinability risk for each possible pathway. The logic for this extended
algorithm is outlined in Algorithm 2.

In this algorithm, we first process each pathway and extract the column names,

column types and the column data for each attribute present in the datasets of the
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Algorithm 3 Sub-function: scoreCalculationCr

Require: i, j: Starting and ending indices

Require: columnsNames: List of all column names

Require: columnsData: Dictionary containing data for each column

Require: columnsTypes: Dictionary containing data types for each column in each

column

Require: aoi: User supplied attributes of interest

1:

10:

11:

12:

13:

subSet1 « (JI_} columnsNames|k]

sharedAttrs < subSetl N columnsNames|j]
rw < [50, 1] > Risk weights
aoiR < (aoi N shared Attrs) > aoi Ratio
riskScore < (rw[0] * |aoiR|) + (rw([1] * (|sharedAttrs| — |aoiR)))
A, B, dataType < [],[], []
saScores « [|
for sa in sharedAttrs do

A < Ui columnsDatalk]

B « columnsDatalj]

if all(type(sa) = "numeric”) then

sim <« cosineSimilarity(A, B)

saScores < saScores + [sim]
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14: else

15: C <« [licajenlisit > Cartesian of A and B
16: temp « [|

17: for each comb in C' do

18: sim <— InDelSimilarity(comb[0], comb[1])

19: temp < temp + [sim)]

20: end for

21: simMean < Mean(temp)

22: saScores < saScores + [simMean]

23: end if

24: end for

return saScores, riskScore

pathways. These data are arranged according to the order of joins specified in the
pathway. This is achieved using a tree-like structure, where the innermost datasets
are the leaf nodes, and the subsequent datasets are higher-order nodes. More details
about this tree processing mechanism are available in the supplementary materials.For
each pathway, we calculate the shared attributes among the datasets and derive two
ratios: the saRatio and the aoiRatio. The saRatio represents the percentage of
attributes shared by all datasets compared to the total attributes available, while
the aoiRatio indicates the percentage of attributes of interest present in the shared
attributes relative to all possible quasi-identifiers. The third ratio, simRatio, is
calculated through the Algorithm 3, quantifying the similarity between the values of
the shared attributes. For each pathway, the sim Ratio at each level is a weighted sum,
giving more preference to the innermost join. The final utilityScore is a weighted sum

of these ratios, with more weight given to the similarity between attribute records.
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This score ranges between [0,100], thus making it easier to categorize high and low
utility.

In Algorithm 3, we first calculate the riskScore as the weighted sum of
the number of quasi-identifiers and non-quasi-identifiers present in the shared
attributes. The weights are calculated through an experiment involving different
weight combinations and further detail can be found in the supplementary materials.
To calculate the simRatio for the utilityScore, we first divide the data into two
parts: A and B. A consists of the union of all column values for a specific shared
attribute across all datasets except the last one, while B contains the same for the last
dataset. For example, in the pathway (D; X Dy) X Ds, the first iteration calculates
the simRatio between each shared attribute(sa) of Dy and Dj, where A = D;[sal
and B = Ds[sa]. If the attribute type is numeric, we calculate the cosine similarity
between A and B using the Python scikit-learn package [210, 211]. On the other hand,
if the attribute type is categorical, we first generate all possible combinations of string
values by selecting each value from A and B. Then we calculate the similarity between
each combination string using normalized InDel similarity from Python’s Levenshtein
package [212]. InDel distance is an edit distance between two strings that calculates
the number of insert/delete operations required to convert one string to another and
the time complexity is O(m % n), where m and n are the number of characters in
each string. This distance is then normalized over the maximum possible distance
between two strings of size m and n, respectively. The normalized InDel similarity is
then calculated as 1 — (normalized InDel distance). As per Algorithm 3, these values
are stored in an array and returned along with the riskScore. In Algorithm 2, we
first calculate a mean of these values as simRatioCtMean and a weighted version
of it is added to the simRatio variable. In this case, since this is the first iteration
for this pathway, the simRatioCtMean is divided by 1 (basically the same value)

and added to simRatio. A similar approach is applied to the riskScore. In the
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Figure 6.4 Join Comparison View: LinkLens allows users to compare different
join pathways, with (a) the join order in a selected pathway highlighted in blue and

b, c¢) the utility and joinability risk for each pathway represented by grey bars.

d) Shared attributes between datasets are shown as boxes on the connecting lines,
while (e) the total number of shared attributes is displayed using a circle and text
view to provide a high-level overview. (f) Small grey bars within each dataset
indicate the record count relative to others in the pathway, helping users assess
whether they are worth joining.

second iteration, we now consider A = Di[sa] U Dy[sa] while B = Djs[sa]. Similar
process is undertaken to calculate the simRatioCtMean through the Algorithm 3.
However, this time, it is divided by 2 (since it is the second iteration) and added
to the simRatio, in order to add less weightage to this value. After completing the
iteration through the entire pathway, we compute the weighted sum of all these ratios
to determine the utilityScore for that pathway. Likewise, we apply these algorithms
to calculate the wutilityScore and the joinability RiskScore for all the pathways so
that the users can compare among the different pathways available for a multi-way
join of a specific cardinality. For computational efficiency, we have set a cutoff limit
of 200 records for columns while calculating their similarity. Though this does not
affect smaller datasets, for larger datasets, we can remove this constraint based on

the availability of computational resources.

6.5.2 Join comparison view
LinkLens employs various visual cues to encode utility scores, joinability risk scores,
and other relevant details for each pathway. In this sub-section, we discuss how

different components of the Join Comparison View (Figure 6.4) assist users in
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comparing multi-way join options and making an informed decision toward selecting
a particular join pathway.

Encoding pathways: LinkLens represents join pathways using a series of connected
rectangle boxes, where each box represents a dataset, and the connections denote
possible joins. The size of each box reflects the relative size of the selected datasets
in that pathway, based on the number of available records in those datasets.This
provides the user with an estimate of the potential size of the joined results for each
pathway. The rectangles are arranged in rows, with each row representing a different
join pathway. The background color of the rectangles varies using a gradient from
blue to white, indicating the order of the join in that pathway. For example, in
Figure 6.4a, since datasets Professional Medical Conduct Board A and Base Provider
Enrollment File are joined first, they have a blue background, while the subsequent
join with dataset Public Chauffeurs results in a white background. If the pathway
has a higher cardinality, such as ((D1 X D2) X D3) X D4, D1 and D2 would have
a blue background, while D1, D2 and D3 will have a lighter blue background and
the last dataset would have a white background. This visualization helps users
compare different join cardinalities and understand the available pathways in those
cardinalities (T4).

Developing a join strategy requires understanding the connections between each
dataset in a join. Hence, LinkLens displays the number of shared attributes using
circles between the lines connecting datasets (Figure 6.4e). This allows users to
quickly glance over the number of shared attributes between each join candidate and
compare each pathway based on it joinability. On hovering over each circle, LinkLens
shows the list of shared attributes (Figure 6.4d). Each dataset’s record count, relative
to others in the pathway, is displayed as a mini bar (Figure 6.4f). Hovering over these
bars reveals the exact record numbers, giving users insight into whether the datasets

are worth joining. These interactions supports human-in-the-loop exploration of
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multi-way join pathways, allowing domain experts to use their background knowledge
to select pathways with attributes relevant to their field. Attributes of interest selected
earlier are highlighted in the same darker shade of grey, emphasizing their presence
in the shared attributes and assisting in pathway selection based on user’s interests.
Upon selecting a pathway, LinkLens automatically suggests a join type, but users can
augment this suggestion based on their needs, choosing from intersection join, master
join, union join, or concatenation for each join action. Together, these visual analytic
features in LinkLens assist the user in selecting a join strategy (T6).

Encoding scores: LinkLens encodes the utility score and the joinability risk
using two grey bars, with the filled area in each bar indicating the respective
scores (Figure 6.4b, c¢). The utility score always falls within the range of [0, 100],
establishing a part-to-whole relationship with the maximum possible utility score of
100 for any given pathway. Thus, the visual representation of the filled bar effectively
illustrates this part-to-whole relationship, enabling users to quickly compare various
pathways based on their utility scores (T5).

While the pathways are arranged in descending order of utility scores, the
joinability risk—represented by another filled bar—also aids in pathway comparison.
Although these scores are visually abstracted through filled bars, hovering over them
reveals a tooltip displaying the actual utility or joinability risk scores. It is crucial
for users to select pathways with lower joinability risk, as no user wants to risk the
disclosure of sensitive information. Yet, a pathway with higher utility may also carry
some level of joinability risk. LinkLens helps users in balancing utility and privacy
considerations in these multi-way joins, facilitating the selection of an appropriate

join strategy (T6).

128



6.6 Evaluate Join Outcome (G3)
Once the datasets are joined, users can inspect the join outcome to evaluate their
utility (T7) and disclosure risk (T8). This is facilitated through Outcome Evaluation
View in the LinkLens interface. In this section, we describe how various visual analytic
interventions assist users in understanding the utility of the join outcome in relation

to potential disclosures.

6.6.1 Methods for utility and disclosure evaluation

Finding useful attributes: The utility of the join outcome can be subjective, as
it depends on the user’s interests and may vary from one user to another. However,
information-theoretic approaches, such as entropy, offer quantifiable measures in this
context [198, 222, 199, 223]. This metric has also been used in analytical models that
focus on comparing privacy and utility [224, 225]. Therefore, in LinkLens, we begin
by calculating the entropy of the attributes of the join outcome dataset using the

Shannon’s entropy, as shown in Equation (6.3).
H(X)=-Y P(z;)ln P(x;) (6.3)
i=1

where X represents an attribute in the join outcome, H(X) denotes it entropy, and
x; represents each category of the attribute X in the join outcome.

The attributes are then arranged in descending order of their entropy. The idea
behind this is that attributes with higher entropy indicate greater information content,
which is beneficial to the user. This arrangement helps users prioritize attributes
which may help them to understand the utility of the join outcome in a better way.
Finding disclosures: Attribute categories with very low frequencies can lead to
disclosure of sensitive information. For example, if there is only one record for a
person aged 11, this record can potentially expose sensitive details of that individual.

Furthermore, if multiple quasi-identifiers are unique to this record, identifying
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the individual becomes significantly easier. Therefore, addressing low-frequency
attributes is crucial for identifying potential disclosures in the join outcome.

Thus, to identify potential disclosures, we analyze all unique combinations of
the quasi-identifiers present in the join outcome. If any combination has fewer than or
equal to k records, those records are flagged as possible disclosures. Ideally, & would
equal 1; but we have noticed that some records become duplicated during the joining
process due to null or missing values. One solution is to eliminate records with null
values; however, this often leads to a significant loss of data quality, as many datasets
contain numerous records with missing columns. These missing columns are often
due to data quality issues or the redaction of sensitive information during publication.
Thus, we have ensured that the values for the join keys are free of missing values;
nevertheless, null values in other columns may still result in some duplicate records.
As a result, we set k = 3 to detect disclosures in the join outcome. These disclosures

can be evaluated through the Outcome Evaluation View of LinkLens.

6.6.2 Outcome evaluation view

This is the final screen of LinkLens, where the users can understand the dataset,
make informed decisions, and export the dataset it as needed. In this sub-section,
we describe how Outcome Evaluation View helps users in exploring the utility of the
join outcome (T7) and inspect it for potential disclosures (T8).

Exploring join outcome: In LinkLens, we devised a visualization that organizes
the attributes of the join outcome in descending order of their entropy. As previously
noted, attributes with higher entropy signify greater information content; hence,
prioritizing these attributes would be beneficial to users evaluating the utility of the
join outcome. This visualization also includes a distribution representing the various
categories for each attribute. The distribution is illustrated through a stacked bar

chart, where each stack corresponds to a category of that attribute (Figure 6.5a).
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Figure 6.5 Outcome Evaluation View: Through this view, LinkLens assists
user in (a) understanding the composition of the join outcome through a stacked
bar visualization, (b) where different color schemes represent various attribute types
and their values. (¢) A metadata box summarizes some key components of the join
outcome, while (d) showing any potential disclosures.

The categories are color-coded using different color schemes. Numerical
attributes are represented through an orange sequential color scheme, with darker
orange colors indicating higher numbers. Categorical attributes are represented using
distinct colors from the Tableau 10 color scheme. If the number of categories are
larger than ten, then each category’s initial characters are converted to ASCII codes
and assigned a corresponding color from a grey sequential color scale (Figure 6.5b).
Null values, shown in light pink, provide insight into the completeness of the results
and, consequently, the overall utility of the outcome dataset. For instance, in
Figure 6.5, the join outcome has limited usefulness due to a high proportion of records
containing null values. As our solution is interactive, users can explore record details
associated with specific attribute categories by hovering over each category, which
proves particularly useful for examining the outcome dataset at the record level. This
colored categorization of the join outcome’s records, along with the prioritization
of high entropy attributes, helps users understand the outcome’s composition and

analyze it for utility (T7). Users can also download the join outcome for further
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investigation. A metadata box accompanying this visualization helps summarize the
number of records, attributes, and disclosures (Figure 6.5¢).
Acting on disclosures: The join outcome may or may not have any possible
disclosures. Users can inspect them using the “Show Disclosure” button below the
metadata box (Figure 6.5d; in this case, no disclosures are present). This reveals a
small table below the visualization for the join outcome and populates it with the
disclosure records. The attributes in this table view are arranged similar to that of the
visualization of the join outcome which prioritize attributes with higher entropy. Users
can inspect each disclosure record and take relevant actions for each of them (T8).
In this table, each potential disclosure is loaded individually and includes two
action buttons: one for keeping the record and the other for deleting it. Users can
review the record and decide on an action based on the severity of the disclosure and
their background knowledge. For instance, a user can opt to either remove the affected
records or ignore them altogether. While other actions, such as redaction [226] or
generalization [227, 228], can be performed for these records, they are beyond the
scope of this work. Still, the user can identify those records through LinkLens and
export them for further modifications. The exported version of the join outcome will

contain all records except the ones the user wished to remove earlier.

6.7 Usage Scenario
Usage scenarios are essential for evaluating the practical applications of data analysis
workflows. They demonstrate how users can interact with various features of a visual
analytic tool to achieve specific goals and tasks, allowing for an assessment of the
workflow’s utility and usability in real-world contexts. In this section, we describe an
usage scenario that help understand the efficacy of LinkLens in balancing utility and

privacy factors during multi-way joins.
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Figure 6.6 Usage Scenario:(a) A user can select different attributes of interest to
search relevant datasets from the open data ecosystem. (b) LinkLens clusters them
into joinable groups and (c) explains the rationale behind their grouping. (d) Users
can then view the possible pathway(s) for the selected datasets and (e) compare
their utility scores and joinability risks. (f) Next, users can select a join strategy
and evaluate the join outcome by examining the distribution of the record
categories. (g) A metadata box summarizes different characteristics of the join
outcome along with the possible disclosures, (h) such as an incident where a data
subject was charged with armed robbery.

Consider a scenario where Jane, a data analyst at a police department,
tasked with researching police incidents to train an Al model aimed at predicting
future crime patterns and improving resource allocation. She wanted a tool that
would allow her to join multiple open datasets but was also aware of the potential
disclosure of sensitive information when linking datasets related to human subjects.
Hence, she sought a tool that could balance privacy and utility factors during the
data joining process. In this context, Jane opened LinkLens in her browser and

selected a few attributes of interest from the available options, such as offender
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age, victim gender, offender race, victim race, and victim age, commonly used in
police datasets (Figure 6.6a) (T2). Upon searching for relevant datasets, LinkLens
clustered datasets from over 100 open data portals and displayed them in the Dataset
Joinability View (Figure 6.6b). Jane used the Cluster Details feature to explore
each cluster, examining the frequent attributes to understand the reasons behind the
formation of that cluster (Figure 6.6¢) (T1). During her exploration, Jane discovered
that Cluster 6 contained many location-related attributes. She investigated the
datasets in this cluster and found two from the New Orleans Police Department [229]:
FElectronic Police Report 2015 and FElectronic Police Report 2016 (T3). Jane selected
these two datasets and proceeded to the Join Comparison View to examine all possible
combinations between them. The two datasets could only be joined by a single
pathway (Figure 6.6d). In this view, LinkLens indicated that this pathway had both
a high utility score of 79.75 and a significant joinability risk of 21 (Figure 6.6e) (T4,
T5). Given the high utility of this pathway, LinkLens recommended performing
an intersection join between these datasets (T6). After joining them, Jane began
exploring the utility of the join outcome in Outcome Evaluation View and gathered
some insights, such as the majority of the victims being female (Figure 6.6f) (T7).
Although this was an important observation, it would not be useful for training her
model, as the gender skewness could introduce bias. Additionally, she noticed that
there were only 30 records in the join outcome, which was insufficient for her analysis
and model training purposes (Figure 6.6g). Moreover, she observed some potential
disclosures in the join outcome dataset. While exploring these 18 disclosure records,
she observed an incident where a 23-year-old black male was charged with attempted
robbery with a gun against a 29-year-old white male at 6XX Tchoupitoulas St on 12
July 2015 at 01 : 00 hrs and again on 29" April 2016 at 03 : 00 hrs with attempted
simple robbery (Figure 6.6h) (T8). At this point, Jane considered whether she could

obtain a larger number of records for her research. To achieve this, she decided to
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Figure 6.7 Usage Scenario continued: (a) If users select multiple datasets,
LinkLens displays all possible pathways for thls multi-way join and ranks them
based on their utility score and joinability risk. (b) Users can explore the join
outcome through the Outcome Evaluation View and (c) with the metadata on
records, attributes, and potential disclosures, users can make a decision about which
join outcome best suits their needs.

join the datasets using a union join. In a union join, records from both datasets are
retained, and any common records are merged. This process yielded 262, 393 records,
which Jane began exploring in Outcome Evaluation View. Although the balance
between male and female victims improved with this join, a significant number of
null records were present. Additionally, the potential disclosures increased to 74.
Jane wanted to check if she could increase the number of records before exploring
the disclosures. She returned to Dataset Joinability View to search for a similar
dataset that could provide additional records. After examining the datasets in the
same cluster, she discovered the dataset Electronic Police Report 2017 and selected
it for a multi-way join. According to Equation (6.2), a combination of three datasets

can produce three distinct pathways. LinkLens displayed all these potential pathways
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in Join Comparison View and ranked them based on their utility scores in descending
order (Figure 6.7a) (T5). Although other pathways had marginally lower utility, the
pathway FElectronic Police Report 2015 X ( Electronic Police Report 2016 X Electronic
Police Report 2017) ranked the highest. Jane selected this pathway, and LinkLens
once again recommended an intersection join due to the high utility associated with
this pathway (T6). Jane initially attempted this intersection join, but it did not yield
any disclosures. Needing more records, she opted for a union join for this pathway,
which produced 199,255 records (Figure 6.7b). Although this was slightly fewer
than the previous outcome, it included data for three years and reduced the possible
disclosures to 18 (Figure 6.7c). At first glance, this join outcome seemed incomplete
due to many null values. However, a closer look revealed that both join outcomes
had 36 non-null or partially complete attributes, making them comparable on this
metric. Jane realized that a round of data cleaning could resolve the null value issue,
making the three-year join outcome more valuable for her training purposes (T7).
Additionally, this outcome was balanced in terms of gender, essential for training an
Al model. She evaluated the disclosure records and decided to remove them since
there were only about 18, a small number compared to the total records (T8). Jane
then exported this version for her research purposes. Thus, a researcher can use
LinkLens to find relevant datasets, explore multi-way joining options, and balance

privacy and utility factors throughout the process.

6.8 Conclusion
LinkLens represents a significant step forward in addressing the challenges of
multi-way join analysis. This visual analytic system aims to help users navigate
the complex task of balancing utility and privacy risks when joining multiple open
datasets. By implementing attribute profiling based on user interests, as well as

utility and joinability risk scoring algorithms, the LinkLens workflow provides a

136



structured approach to multi-way dataset join exploration and analysis. Interactive
visualizations complement this by helping users discover joinable datasets from a vast
pool, compare multi-way join options, and ultimately evaluate the join outcomes. The
visual analytic interventions presented through Dataset Joinability View and Join
Comparison View provide representations of dataset relationships and join strategies,
aiding users in making informed decisions. Additionally, Outcome Evaluation View,
with its entropy-based attribute prioritization and disclosure detection mechanisms,
further supports the assessment of both utility and potential privacy risks in joined
datasets. A key lesson learned from this work is the importance of design choices
that help users effectively reduce the candidate space and triage options during
the decision-making process. Furthermore, due to the computational complexity of
joining large datasets, we also recognized the need for design and implementation
choices that allow time for these computations while keeping the user informed
throughout the process. By incorporating human expertise at crucial decision points
while automating complex calculations, LinkLens aims to strike a balance between
computational efficiency and domain-specific insights. This work contributes to the
field of visual analytics and addresses important concerns in data privacy and utility
maximization, potentially serving as a useful tool for researchers working with open

datasets across various domains.
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CHAPTER 7

FORTE: NET LOAD FORECASTING WORKFLOW

7.1 Introduction
The net load of an electric grid can be defined as the difference between the total
electricity demand and the electricity generation from behind-the-meter resources
such as solar and other distributed generators [230]. It can vary based on various
factors, including weather conditions and the time of the day. Accurate net
load forecasting enables grid operators, policymakers, and energy providers to
make informed decisions regarding energy trade, load distribution, and resource
allocation. However, the proliferation of solar energy generation sources in residential
settings has significantly impacted the performance of traditional net load forecasting
models [231]. We have collaborated with scientists who have developed a deep-
learning model that produces probabilistic net load forecasts incorporating variables
such as temperature, humidity, apparent power, and solar irradiance, achieving strong
predictive performance and resilience in the face of missing data [61]. But, in
order to improve trust in the model, these outputs need to be explored by domain
experts, including scientists and grid operators. The model’s performance may
fluctuate due to seasonal variations in the input variables, and stakeholders must also
assess its reliability in the face of noisy inputs mirroring real-life scenarios. Hence,
the process is complex and time-consuming, prompting the need for an approach
capable of performing these tasks and enhancing trust in the model’s performance.
Visual analytics can be instrumental here since prior research has shown that it can
significantly enhance trust in model outputs during complex sense-making tasks [22].

In [23], it was argued that visual analytics would play a critical role in enabling
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trust-augmented artificial intelligence and machine learning (AI/ML) applications in
energy sector.

In light of this, we collaborated with energy scientists to thoroughly investigate
the model’s performance across diverse time periods and input scenarios, gaining
valuable insights into the evaluation tasks needed to comprehend the model’s
effectiveness. Building upon this experience, we performed a design study to develop
a system aimed at facilitating stakeholders in efficiently performing these evaluation
tasks. As a result, we developed a visual analytics-based application Forte that
empowers users to gain an in-depth understanding of the model’s performance,
effectively leveraging data visualization techniques to aid informed decision-making
in the realm of energy planning and grid operations.

Our application aims to provide a broad understanding of various aspects related
to net load forecasting. First, it enables researchers and scientists in the energy
domain to assess net load variability concerning input variables by comparing model
forecasts with actual net load values across different time periods and seasons. They
can gain insights into their impact on model performance by analyzing the effects
of variables like temperature, humidity, and apparent power on net load forecasts.
Second, Forte helps evaluate forecast errors with noisy inputs at different noise levels,
thus providing information for improving the model’s reliability and robustness in
real-world scenarios. This visual analytics-based approach can empower scientists
and grid operators to make data-driven decisions, enhancing trust and confidence in
the net load forecasting model.

While prior research has primarily concentrated on developing interfaces during
the model development process, tailored to aid model developers, our focus lies in the
post-hoc evaluation of the model’s performance, catering specifically to the needs of
energy scientists and grid operators [232, 233]. Other works explore the performance

of probabilistic net load forecasting models through different visualization charts
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but do not offer an integrated interactive interface [234, 235]. Our visual analytic
tool, Forte presents an integrated workflow that empowers users to explore net load
variability and forecast error analysis concerning various input variables and scenarios,
which makes it a novel approach in this domain.

In this chapter, we first introduce our visual analytics-based application, Forte,
developed in collaboration with energy scientists (Section 7.2). Emphasizing the
analytical goals and tasks, we also provide insights into the underlying design
rationale. Subsequently, we present observations gleaned through our application
that can potentially drive advancements in grid operations (Section 7.3). Finally,
we conclude with the lessons learned from this design study and how we incorporate

them into our application (Section 7.4).

7.2 Visual Analytics-based Design

Our application Forte adopts a visual analytics-based design that integrates
coordinated views aided with visual cues to show the various aspects of net load
forecasting outcomes. It combines interactive visualization with performance
metrics to instill greater trust in model outcomes, providing users with the
flexibility to probe net load predictions as a function of input variables like
temperature and humidity. In this section, we outline our Forte’s goals and tasks,
followed by an explanation of our design rationale. We aim to achieve the following
visual analytic tasks via Forte:

T1: Understand actual net load and predictions across time periods and solar
penetration levels: The net load forecasting model is trained with data from varying
solar penetration levels, while energy consumption fluctuates throughout the day and
across seasons. Thus, this task involves comprehending the model’s performance

across diverse time spans and solar penetration levels.
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Figure 7.1 The interface for our net load forecasting visual analytic

tool (Forte): (a) Our application facilitates the comparison of actual and
predicted net load within the selected time frame and solar penetration levels as
defined (b) through the Options Selection Area. Further, (c) the influence of various
weather conditions on predictions can be explored via the Inputs View Area. The
highlighted region shows instances of missing temperature data and resultant
disagreement between predicted and actual net load within the same time period.
These insights are valuable to grid operators as it allows them to review the data
quality, evaluate its impact on model performance, and make recommendations for
sensor/metering upgrade.
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T2: Explore the impact of input variables on net load prediction: Different inputs,
such as weather conditions, influence the forecasting model differently. Therefore, it
becomes essential to grasp the effects of these input variables on the model across
diverse time spans, which motivates this task.
T3: Augment missing data with background knowledge: Real-world weather data
frequently includes gaps due to various factors. However, a domain expert may possess
insights into expected temperature or humidity for specific timeframes. This task
involves empowering users of the application to adjust inputs and observe how these
modifications influence the model’s performance.
T4: Design experiments simulating different noisy input scenarios: Noisy inputs
can vary due to factors like noise levels, direction (bidirectional/uni-directional), and
number of observations. This task involves crafting scenarios using these factors to
simulate and explore noise effects.
T5: Assess model efficacy across different months and varying levels of noise: The
model’s sensitivity to noisy inputs can differ among months and noise levels. This task
involves studying how varying noise levels affect model performance across different
months.

Next, we explain our application’s design by outlining its various high-level goals

and demonstrating how it accomplishes these tasks.

7.2.1 Goal: understand net load forecasts w.r.t input variables
Understanding the interplay between net load forecasts and input variables is
essential for making informed decisions in energy planning and ensuring efficient grid
operations. Towards this end, Forte integrates three essential components:
Options Selection Area: As mentioned earlier, net load forecasts can
fluctuate based on time periods and solar penetration levels. Accordingly, Forte

offers these selections prominently at the top, within the Options Selection
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Area (Figure 7.1b). This area contains two date and time pickers, enabling users to
specify their preferred observation timeframe. Currently, users can opt for any date
within the year 2020, with the potential for expansion as further data is available.
Additionally, users can choose solar penetration levels from 0%, 20%, 30%, and
50%. This area provides options for choosing different prediction horizons (15
minutes or 24 hours ahead) and input variables (temperature, humidity, apparent
power, etc.) tailored to user preferences. Initially, a limited set of input variables is
loaded to reduce visual clutter, allowing users to add more based on their choices.

Net Load View Area: This component facilitates a direct comparison
between the actual net load and the predicted net load for the chosen time period
and solar penetration level, as selected within the Options Selection Area (T1). This
visual representation employs a blue line to depict the actual net load and an orange
line to depict the predicted net load (Figure 7.1a). The extent of proximity/overlap
between these lines indicates the level of agreement between actual and predicted net
load, reflecting a superior model performance. But the degree of agreement can also
be quantified by metrics like Mean Absolute Error (MAE) [236] and Mean Absolute
Percentage Error (MAPE) [237], which are revealed by hovering on the icon button
atop this area.

Since our net load forecasting model produces a probabilistic forecast, we
additionally present the 95% confidence interval for this forecast, indicated by a
subtle, shaded grey area. This design choice was made to streamline the view by
avoiding the introduction of two additional lines, effectively minimizing visual clutter
within this area. When users modify the options, we noted that the Y-axis within this
area might shift due to value changes, impeding the observation of variations across
distinct time periods or solar penetration levels. This problem can be alleviated
using the “Freeze Y-axis” option, which, as the name suggests, freezes the Y-axis at

the current values and plots the new values based on the frozen axis. Additionally,
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changes can be tracked using the Replay button, which showcases net load changes
through a slower animation (= 10s).

Inputs View Area: Located on the right-hand side of the application, the
Inputs View Area displays the selected inputs (as selected from the Options Selection
Area) and their respective values during the chosen time period (Figure 7.1c). It
also shows some of the historical data used while generating the forecast for this
period. This visualization aids in establishing correlations between weather data and
the agreement/disagreement observed between the actual and predicted net load,
thereby impacting model performance (T2).

Nonetheless, weather data might feature gaps for specific time spans, which are
addressed through linear interpolation connecting the nearest available data points.
These interpolated points are indicated in red, and users have the flexibility to drag
and adjust them based on their expertise (T3). The data quality, denoting the
percentage of missing data, can be accessed by hovering over the icon button atop
each input variable. Conversely, if the users do not trust the quality of the available
weather data, they can apply a uniform noise of 5% or 10% via the “Add Noise” option
for each input variable. All these changes are reflected on the Net Load View Area
once users hit the “Update” button. Thus, Forte begins with simple visualization

and default settings, easing the learning curve as users delve into advanced features.

7.2.2 Goal: compare model performance w.r.t noisy inputs
During our investigation into the influence of input variables on net load prediction,
we noticed that the model’s responses varied with different noise levels. Hence, we
developed a separate linked page with the following components.

Experiment Design Area: Users can generate simulated noisy inputs for
varying dates spanning multiple months and a specific input variable. This area

empowers users to select their preferred input variable (temperature, humidity,
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Figure 7.2 Experimental Results: (a) Our application Forte enables the design
of experiments through the creation of noisy inputs using various factors; and the
results (error rates) can be cross-compared across various months for both the input
variables of (b, ¢) temperature and (d, e) humidity; (f) with the option to view
detailed observations for each month. These insights generated through Forte are
valuable to the user (a grid operator) to not only reveal the underlying dependence
of the model outcome (net load prediction) on different input weather conditions but
also better prepare ahead of any impending weather events (e.g., heat/cold wave).

apparent power), set start and end dates, and designate desired months for
introducing noise (T4). The area also offers the flexibility to add or subtract a
uniform noise (ranging from 1% to 30%) from the original inputs or use a combination
thereof (Figure 7.2a). As the noise is uniformly distributed, the Experiment Design
Area accommodates multiple observations/forecasts with identical inputs. Finally,
users can add a name and short description for future reference, and our application
will show an estimated time for completing this experiment. This experiment-based
architecture enables Forte to manage computational overload efficiently.
Ezxperiments View Area: Once the designed experiments are complete,
those are available for the user’s perusal. Users can select any of the completed exper-
iments/jobs from the left-hand side navigation bar. Each experiment initially displays
two line charts depicting the error metrics MAE and MAPE (Figure 7.2b, 7.2¢). These

charts comprise lines corresponding to the months chosen during the experiment
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design. Each line illustrates the deviation in error metrics from their baseline values
(established at 0% noise or no noise) (T5). We offer an alternative visualization in
the form of a heatmap, illustrating the deviation in MAE from the baseline values for
each month. Based on initial feedback, users found this heatmap particularly useful
for comparing the model’s sensitivity across different months (Figure 7.2¢, 7.2d). In
addition to this, users may want to explore the error rates for each month. Hence,
we also include two scatterplots for each month (for each of the error metrics), which
show the error rates for each of the observations (Figure 7.2f). This scatterplot is
then augmented with a line showing the average error rate for that month across
different noise levels, mimicking the corresponding line in the first line chart. This
view area helps to understand the model’s performance when faced with noisy inputs
and, in the process, improves trust in the model. Forte is primarily developed using

React.js and D3.js for the frontend, and Flask framework in Python for the backend.

7.3 Experimental Results

In this section, we showcase some outcomes from our application, emphasizing their
possibility to enhance model training and potentially streamline grid efficiency. We
illustrate this through a practical scenario involving a research scientist named Amy.
Amy seeks to comprehend the influence of noisy inputs on the model and enhance
trust in net load forecasts, consequently aiding effective grid operations planning.

Amy scrutinized net load predictions for January 3rd to 4th, 2020, at a 50%
solar penetration level through our application (T1). She noted a general alignment
between predictions and the actual net load values, barring a deviation around 1
a.m. on Friday, January 3rd (Figure 7.1). Intrigued by this discrepancy, she used
our application to delve into the temperature data for that period (T2). Here, Amy
observed some missing data around the same time. The data around this timeframe

underwent linear interpolation using the nearest available data, which Amy speculated
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might contribute to the discrepancy. To investigate, she interactively adjusted the line
chart at this point, thereby updating the temperature values for that period (T3).
This led to slight prediction variations, suggesting temperature’s significance as an
input variable to the model. As a further step, she introduced a uniform 5% noise
to all temperature values within the selected time period. Interestingly, this led to
several changes in the predictions.

Now, Amy aimed to systematically comprehend the influence of noisy
temperature values on the net load forecasting model. She devised an experiment
by (arbitrarily) selecting the 3rd and the 4th days of various months in 2020 and
introducing consistent bias/noise, ranging from 1% to 30%, to the recorded
temperature values (T4) (Figure 7.2a). Surprisingly, she observed no change in the
error metrics. Her inference was that the model normalizes inputs before generating
the predictions, thus explaining the similar outputs despite varying noisy inputs.
Subsequently, Amy replicated the experiment, introducing uniform noise to the
temperature values. As an example, for a temperature of 60°F with 10% added
noise, the range of noisy input could span from 60°F to 66°F. Given the randomized
nature of this experiment, she chose to replicate it across 50 observations/iterations,
akin to repeated measures design [238, 239]. Having reviewed the findings of this
experiment, she proceeded to repeat it over eight months (January, February, April,
May, July, August, October, and November). Her observations unveiled that,
although error rates were minimal, the model displayed heightened sensitivity to
noisy data during January and July, across numerous noise levels—albeit with
exceptions. In contrast, the model exhibited the least sensitivity during April and
May (Figure 7.2b and 7.2c¢). The observed variations in the model’s sensitivity to
noisy perturbations in temperature data across different months, can be attributed
to the influence of seasonal weather variations on usage of electricity (T5). For

example, typically the heating and cooling load — which drives the residential energy
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demand — typically peaks during the coldest (e.g., January) and the hottest (e.g.,
July) months, thereby ensuring heightened sensitivity of net load to temperature
variations. In contrast, sensitivity of residential energy usage to temperature
perturbations remain low in shoulder months (e.g., April and May) with typically
milder weather. Given the potential impact of climate change on these results over
time, it is imperative to use Forte to conduct further such experiments regularly.
Insights revealed from this experiment helped Amy gain confidence in the model.
This also underscores the embedded learning process, as these insights serve as
valuable resources for retraining the model to handle noisy scenarios better.
Subsequently, Amy sought to determine if humidity yielded similar effects
on the model’s performance. She initiated a parallel experiment focusing on
humidity (Figure 7.2d and 7.2e). Notably, her observations indicated heightened
model sensitivity during February and October, with reduced sensitivity aligning with
April—mirroring the earlier temperature findings. Furthermore, she delved deeper
into the predictions for each month, aiming to grasp the distribution of error metrics
across noise levels within 50 observations (Figure 7.2f). While noting the presence of
outliers in these error metrics, Amy observed that the mean line of these observations
effectively captured the trend across most months. On an overall assessment, Amy
discerned that while error rates varied across different months, the model consistently
demonstrated commendable performance, with notably low error rates difference from
the baseline (~0.05kW MAE). We can thus conclude that our visual analytics tool
Forte effectively enabled her to grasp the model’s performance concerning diverse

weather data and their noisy variants, thus improving her trust in this model.

7.4 Conclusion
The significance of accurate net load forecasting in energy planning and grid

operations cannot be overstated. Hence, in this study, we explored net load
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forecasting, leveraging a collaborative approach with domain experts to develop a
visual analytics-based application. By partnering with energy scientists, we not only
identified critical evaluation tasks but also translated them into an intuitive interface
that empowers users to make sense of complex model behaviors.

Throughout this endeavor, we gained valuable insights into the challenges posed
by noisy inputs, seasonal variations, and the need to instill trust in forecasting models.
The collaborative process exposed the complexities of real-world data analysis and
emphasized the necessity for efficient, user-friendly tools that bridge the gap between
model insights and actionable decisions. We can argue that our application is a
first step towards this direction. As a next step, we plan to elucidate the input
normalization process, add other error metrics, and incorporate economic planning
and analysis to enable stakeholders to gauge the cost-benefit ratio and enhance trust
in the net load forecasting model [240, 241].

Looking ahead, there are multiple areas where we would like to enhance Forte.
Incorporating more datasets spanning multiple years, expanding to additional weather
conditions, automating aspects of the experiment design area, and even using transfer
learning techniques are all promising avenues for future exploration. As the energy
landscape evolves, our application’s adaptability will play a vital role in helping
energy planners, grid operators, and policymakers navigate the complexities of net
load forecasting. In conclusion, our collaborative effort has yielded a powerful tool
that not only deepens our understanding of net load predictions but also lays the
foundation for more informed and efficient energy planning decisions in the years to

come.
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CHAPTER 8

WORKFLOW FOR TRUST-AUGMENTED MODEL COMPARISON

8.1 Introduction

Comparing multiple computational models for their performance is crucial for
enhancing trust in model outcomes because it provides a basis for evaluating the
reliability and consistency of each model [242, 243, 244]. By assessing how different
models perform under various conditions and scenarios, stakeholders can better
understand their strengths, weaknesses, and overall effectiveness. Such comparative
analysis helps to identify the most suitable model for specific tasks or applications,
thereby instilling confidence in the reliability of the chosen model. This becomes
more important while predicting the net load of an electric grid, which is defined as
the difference between total electricity demand and generation from behind-the-meter
resources like solar and distributed generators, and is influenced by various factors
such as weather conditions and time of day [245, 230].

Accurate net load forecasting enables grid operators, policymakers, and energy
providers to make informed decisions regarding energy trade, load distribution, and
resource allocation. However, the rise of solar energy generation sources in residential
settings has significantly impacted the performance of traditional net load forecasting
models, highlighting the need for robust time-series forecasting techniques [231].
Collaborating with scientists, we developed a deep-learning model that integrates
variables such as temperature, humidity, apparent power, and solar irradiance to
achieve strong predictive performance and resilience in the face of missing data [61].
Still, the model’s sensitivity to seasonal variations and noisy inputs underscores the

need for further exploration with domain experts. Hence, we developed an interactive
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tool that empowers users to investigate the model’s performance across diverse time
periods and input scenarios [28].

While we initially recognized the importance of comparing the model’s
performance with traditional models, feedback from domain experts further
emphasized its significance in building trust in model outcomes. Visual analytics
can play a pivotal role here, as evidenced by prior research demonstrating its
importance in enhancing trust in machine learning models [246]. This is exemplified
by the interactive tool we developed, which enabled domain experts to extract
valuable insights concerning the model’s sensitivity toward temperature and
humidity. Moreover, recent discourse, as highlighted in [23], emphasizes the critical
role of visual analytics in fostering trust-augmented applications of artificial
intelligence and machine learning (AI/ML) within the energy sector. Building upon
this, we designed our application, incorporating carefully selected visual analytic
interventions. These interventions facilitate the comparison of multiple models
across various parameters, including solar penetration levels, dataset resolutions,
and different hours of the day, enhancing stakeholders’ confidence in model
performance.

The aim of our application is to build trust through model comparison, primarily
comparing our net load forecasting model with a reference model. We enhanced our
model to process inputs at varying resolutions and then devised the reference model,
which generates predictions by averaging net load ground truths for the last 30 days
at the same time point. Despite lacking predictive ML components, this reference
model serves as a benchmark in various net load forecasting competitions, including
the recent Net Load Forecasting Prize by the National Renewable Energy Laboratory
(NREL) and the U.S. Department of Energy Solar Technologies Office (SETO) [247].
Through the web interface of our application, we were able to uncover patterns in

the performance that help improve trust in the model outcomes. In this work, we
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identify the visual analytic tasks that are required to compare these models. These
tasks can be extended to compare other similar net load forecasting models, enabling
users to make well-informed decisions based on the outcomes of these models.

While previous research has predominantly focused on developing interfaces
during the model development phase, tailored to assist model developers, our
emphasis lies in the post-hoc evaluation of model performance, specifically
addressing the needs of energy scientists and grid operators [232, 233]. Other
studies have explored the performance of probabilistic net load forecasting models
through different visualization charts but have often lacked an integrated interactive
interface [234, 235]. In contrast, our interactive visual analytic tool provides
carefully designed visual cues for comparing model performance across different
factors like dataset resolutions and solar penetration levels, thus offering a novel
approach in this domain.

In this chapter, we first introduce the different models used in this work
and the rationale behind choosing them. Subsequently, we outline the identified
visual analytic tasks and detail the design decisions guiding the development of our
interactive interface. This is followed by some of the observations made by our
power scientist collaborator through our application that demonstrate its efficacy in
comparing model performance across multiple facets. Finally, we conclude by sharing
insights gained from this development and discussing some of the future research
opportunities in this domain. Additionally, a short demonstration video is available

here.

8.2 Model description
We start with a deep learning-based probabilistic model tailored for net load
forecasting in high behind-the-meter solar scenarios [61]. This model has three key

components: a kernelized probabilistic forecasting (kPF) module, an autoencoder
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(AE), and a long short-term memory (LSTM) network. This model effectively
captured complex temporal dependencies and uncertainties inherent in net load
data, which is crucial for reliable forecasting in environments with high solar
penetration. By incorporating kernel methods into probabilistic forecasting, the
model handled non-linear relationships and captured subtle variations in net load
influenced by solar energy fluctuations. The autoencoder component enhanced feature
extraction and dimensionality reduction, facilitating the LSTM network’s ability
to capture long-term dependencies and predict future net load values accurately.
Experimental results demonstrated the superior performance of this model compared
to traditional forecasting models, showcasing its efficacy in addressing the challenges
posed by high solar scenarios and advancing the state-of-the-art in net-load forecasting
methodologies.

This model was used in the Net Load Forecasting Prize competition hosted
by NREL and SETO [247]. However, during this competition, we observed
its underperformance on the data provided by the organizers, which had lower
resolutions. We discovered that while the autoencoder component excelled with
high-resolution datasets (such as 15-minute intervals), it struggled to effectively
capture temporal dependencies in lower-resolution datasets (e.g., 1-hour intervals
provided by the organizers). Consequently, this limitation led to subpar outcomes
generated by the LSTM component. In light of this, we opted to remove the kPF and
autoencoder components and instead developed a version of the model solely utilizing
the LSTM component. Additionally, fine-tuning the number of layers in the LSTM
component yielded significantly improved results in the competition.

The competition employed a reference model to assess model performance
across various probability levels. As previously mentioned, this reference model
simply utilizes historical input data from the past 30 days to generate probabilistic

forecasts for a specific time point. This model can serve as the initial benchmark for
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assessing the effectiveness of other models. Therefore, in this work, we developed a
reference model following the same principles. Since these forecasts are probabilistic in
nature, we calculated the Continuous Ranked Probability Score (CRPS) for both the
reference model and our model. Subsequently, we computed the Continuous Ranked
Probability Skill Score (CRPSS) based on these CRPS scores, evaluating whether
our forecast presents an improvement or deterioration compared to the reference
forecast [248, 249]. A positive CRPSS indicates that the forecast outperforms the
reference forecast, whereas a negative value suggests inferior performance. Utilizing
these CRPSS values, we compare the performance of our model against the reference
model across multiple dates throughout the year, and present these values in our

application.

8.3 Visual Analytics-based Design

Our application employs a visual analytics-based design featuring coordinated views
enhanced with visual cues to help users compare model performance. It combines
interactive visualization with comparison metrics like CRPSS to improve trust in the
model outcomes and also allows the users to probe the model and understand its
performance across different solar penetration levels and months. In this section, we
highlight the two tasks performed by our application and how its visual analytics-
based design aids in executing these tasks:

T1: Compare model performance across different solar penetration levels and data
resolutions: Model performance may vary across different solar penetration levels due
to the increased variability in net load data caused by intermittent solar generation.
LSTM-based models might struggle to capture and predict these dynamic behaviors
accurately.  Furthermore, datasets with higher resolutions, such as sub-hourly

intervals, enable models to more effectively capture short-term fluctuations and
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Figure 8.1 Visual analytic application: (a) The Comparison View the
facilitates comparison of CRPSS values between the net load forecasting model and
the reference model at various data resolutions throughout the year. (b) The
Patterns View aids in identifying performance trends across different hours of the
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respectively.
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dependencies. Hence, this task essentially involves comparing model performance
at different solar penetration levels and data resolutions.

T2: Identify patterns across different timeframes: By analyzing performance across
multiple timeframes, power scientists can assess the net load forecasting models’
robustness and consistency in capturing both short-term fluctuations and long-term
trends. This evaluation helps to identify whether a model’s performance is consistent
across various temporal scales or exhibits variability or biases at specific time periods.
This task relates to identifying patterns in the model’s performance across different
months, various hours of the day, and different time periods.

Our application implements multiple coordinated views and components in
order to fulfill these tasks. Next, we discuss the design of these views and components
along with the rationale behind them:

Comparison View: As comparing model performance is the main objective of
our application, we begin with the Comparison View, which utilizes modified box
plots to compare models. Figure 8.1a depicts CRPSS values on the y-axis and
different data resolutions on the x-axis. The box plots illustrate the distribution
of CRPSS values, with the median typically exceeding zero, indicating superior
performance of our model over the reference in most cases. Users can utilize the
solar penetration level filter to compare performance across various levels (20%,
30%, 50%) (Figure 8.1c) (T1). However, based on initial feedback from domain
experts, we recognized the importance of displaying the distribution of CRPSS values.
Therefore, we integrated dots representing the CRPSS values, jittered along the x-axis
to illustrate their distribution over the entire year. These dots align with insights from
the box plot and additionally reveal instances where our model performs worse than
the reference on certain dates. This led to the development of the Patterns View,
where we can identify the timeframes where the model underperforms compared to

the reference.
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Patterns View: In this view, our application utilizes a heatmap to depict
performance patterns for each month across different hours of the day (T2). The
x-axis represents the 24 hours of the day (0-23), while the y-axis displays the months
of the year (Feb - Dec) (Figure 8.1b). Each box in the heatmap denotes the average
CRPSS value for each month at each hour, indicated by the color. Darker blues
signify more positive CRPSS values, indicating the superior performance of our
model compared to the reference at that time. Conversely, darker reds indicate more
negative CRPSS values, signifying poorer performance of our model compared to the
reference at that time. This diverging color scale aids in easily identifying performance
patterns across different time points and facilitates the identification of instances
where our model does not outperform the reference. Users can filter specific months
to focus on particular time periods and analyze performance accordingly (Figure 8.1e).
Additionally, based on feedback from domain experts, we implemented the Sidebar
component to allow users to select specific date ranges and analyze performance
patterns within those ranges.

Sidebar: The Sidebar facilitates user selection of start and end dates to filter
results across all views, enabling focus on specific date ranges (T2) for comparing
model performance within those periods (Figure 8.1d). Additionally, based on
feedback from domain experts expressing interest in comparing model performance
across all solar penetration levels simultaneously, our application offers a comparison
mode toggle in the Sidebar. Enabling this mode updates both views to display
box plots and heatmaps for all solar penetration levels side by side, aiding in
point-to-point comparison and identification of performance patterns across different

solar penetration levels.
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Figure 8.2 Results from a case study: (a), (b), (c) display CRPSS values at
varying solar penetration levels, highlighting the model’s superior performance with
higher-resolution datasets. (d) Additionally, our application reveals insights such as
the model’s ability to learn and predict diurnal patterns, as evidenced by
highlighted box-like patterns.

8.4 Results From A Case Study
The efficacy of an application can be validated if the application is able to perform
the intended tasks effectively. In this section, we show the results through a case
study that demonstrates how our application can be used to compare and select net
load forecasting models effectively.

This case study involved a power scientist with over 10 years of experience
in power and grid systems. With expertise in nonlinear dynamics, large-scale
networks, and distributed control, he played a crucial role in developing the model.
His main objective was to assess the model’s performance relative to the reference

model across various time points and solar penetration levels, which are critical
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factors to consider before deploying it for a project. We informed him that we
had integrated CRPSS values for both the model and the reference model for all
dates throughout the year. He then accessed our application through a browser and
examined the distribution of CRPSS values across different data frequencies at a
20% solar penetration level (Figure 8.2a). Notably, he discovered that the model
performed better with the lower resolution dataset (1-hour), contrary to expectations
for an LSTM-based model (T1). Upon further examination, he noted a marginal
difference in the median CRPSS between high and low-resolution datasets (0.85 and
0.89, respectively). Therefore, he enabled the comparison mode through the Sidebar,
enabling him to assess the model’s performance as solar penetration increased. He
noted that the model consistently performed well with the higher resolution dataset
(15-min) across all other solar penetration levels, confirming the notion that our model
excels with high-resolution datasets in high solar penetration scenarios (Figures 8.2b
and 8.2c). Next, he observed that although the median CRPSS was significantly
above zero, the minimum value was negative. Upon inspecting the dots adjacent to
the box plots in the Comparison View, he observed that while most dots clustered
around the median line, there were a few outliers with negative CRPSS values.
Hence, the scientist sought to understand temporal patterns to identify if any
specific hour of the day contributed to the negative values. Consequently, he navigated
to the Patterns View within our application to analyze the CRPSS value distribution
in the heatmap at a 20% solar penetration level (Figure 8.2d). Consistent with
observations from the Comparison View, most heatmap boxes displayed varying
shades of blue, indicating superior model performance compared to the reference
across most months and hours. On closer look, the scientist noted a box-like pattern
in the heatmap, revealing enhanced performance during morning hours (8 am to
10 am) from April to September, followed by a decline during midday (11 am to 4

pm), and another spike in the evening (4 pm to 6 pm) during these months. This
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pattern suggested that the model effectively captured diurnal variations in net load
data and adjusted predictions accordingly (T2). While similar box-like patterns
were evident across other solar penetration levels, the intensity of model performance
varied with increased solar penetration. This insight holds practical significance
for model selection during deployment, as it suggests the potential use of different
models or model ensembles tailored to distinct times of the day, leveraging their
respective performances on diurnal patterns. Thus, the power scientist was satisfied
that our application could yield valuable insights regarding the model, aiding informed

decision-making.

8.5 Conclusion
Efficient model selection for net load forecasting plays a pivotal role in energy planning
and grid operations. In this work, we delve into this process, integrating visual
analytics with input from domain experts to identify key tasks for comparative model
selection. Subsequently, we translate these tasks into an interactive interface, enabling
users to assess model behavior across various factors such as solar penetration levels,
data resolution, and time of day.

Throughout this endeavor, we gained valuable insights into the model behavior
and the challenges posed during the multi-way comparison of models.  This
collaborative effort underscored the need for interactive tools that facilitate the
seamless translation of model insights into actionable decisions. We can argue that
our application is a first step towards this direction. As a next step, our plan is to
incorporate multiple net load forecasting models into the application and integrate
additional metrics for effective comparison of their performance.

Looking ahead, we aim to enhance our application in several ways.
Incorporating economic planning and analysis options will allow stakeholders to

assess the cost-benefit ratio before model selection, thereby enhancing trust in the
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outcomes. Additionally, as the energy landscape evolves, our application’s flexibility
will be pivotal in effectively comparing and selecting forecasting models for
real-world applications. In summary, our collaborative endeavor has produced a
robust tool for multi-faceted model comparison and has paved the way for informed

decision-making through visual analytics in energy planning.
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CHAPTER 9

CONCLUSION

This dissertation has explored the critical intersection of privacy preservation,
data visualization, and analytical uncertainty mitigation in the context of open
data ecosystems and net load forecasting. Through a series of interconnected
studies and system developments, we have addressed the pressing need for robust
privacy-preserving techniques in data visualization and analysis, while also tackling
the challenges of analytical uncertainty in complex domains such as energy forecasting
and disclosure management. The work undertaken in this dissertation aims to
establish a foundation through interactive workflows and tools that help transform
current “unknown unknowns”—such as the risk of disclosure in open data—into more
manageable “known unknowns.” Additionally, it evaluates whether our workflows
and tools can effectively handle challenges that already fall into the “known
unknown” category, offering valuable insights for future advancements in these
areas. By pushing these boundaries, this dissertation lays the groundwork for
better-informed decision-making in privacy-sensitive and data-intensive applications.
In this chapter, we will provide a summary of the work presented throughout this
dissertation, highlighting key contributions made across the various chapters. We
will conclude by exploring the potential future directions and broader implications of
this research, outlining opportunities for continued development in privacy-preserving
data visualization and analytical uncertainty management.

Review of the literature landscape: Our journey began with a survey of
privacy-preserving data visualization techniques. This review revealed a landscape
where visualization plays a crucial role in empowering various stakeholders in the data

ecosystem to understand and manage privacy implications. We identified key tasks
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such as hiding data, evaluating risks, understanding policies, evaluating trade-offs,
and comparing algorithms. The survey also highlighted significant research gaps,
including the need for uncertainty visualization in privacy contexts, dynamic risk
visualization, and privacy-aware citizen science. This foundational work set the stage
for our subsequent investigations and system developments.

Vulnerable datasets discovery: Building on the insights from our literature
review, we conducted a red-teaming exercise to identify vulnerabilities in open
datasets. Collaborating with data privacy experts, we identified several attack
scenarios and compiled a list of vulnerable datasets from over 100 open data
portals. This ethical hacking approach also revealed several concerning examples
of how seemingly innocuous open data could be combined to disclose sensitive
information about individuals. Our findings underscored the urgent need for proactive
risk assessment tools in the open data ecosystem. This chapter’s work directly
informed the development of our subsequent risk inspection workflow, PRIVEE, and
highlighted the importance of considering both individual datasets and their potential
combinations when assessing privacy risks.

Disclosure inspection workflow: Responding to these vulnerabilities
identified in Chapter 3, we developed PRIVEE, a visual analytic workflow for
disclosure risk inspection in open datasets. This system empowers data defenders to
triage joinable groups of datasets, compare joinability risks, and identify specific
cases of disclosure. We distill this workflow through a web-based interface using
React.js and d3.js for the front end and Python for the backend API. PRIVEE’s
design incorporates interactive visualizations that provide transparent explanations
of risk assessments, allowing defenders to make informed decisions about data
release and privacy protection strategies. The workflow’s effectiveness was
demonstrated through case studies with domain experts, showcasing its potential to

significantly enhance privacy protection in open data ecosystems.
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Utility calibration workflow: After developing the disclosure inspection
workflow, we shifted our focus to calibrating the utility of linked datasets. We
recognized that this aspect deserved to be a stand-alone workflow, enabling the
evaluation of dataset joins independently of other privacy considerations. To address
this need, we developed VALUE, a system specifically designed to assess the utility
of joining open datasets. This work is built upon the concepts introduced in
PRIVEE, expanding the scope to allow users to evaluate the potential benefits of
joining datasets. VALUE'’s interface facilitates the exploration and comparison of
various join combinations across multiple open data portals, offering a framework
for decision-making in data sharing and analysis. This chapter emphasizes the
importance of evaluating utility factors when joining open datasets, ensuring that
informed actions are taken in the face of analytical uncertainty, particularly when
determining which open data best meets the user’s needs.

Balancing privacy and utility factors in multi-way joins: Building on
the foundations laid by PRIVEE and VALUE, we developed LinkLens to address
the more complex challenge of multi-way joins. This chapter introduces a workflow
that balances privacy considerations with utility factors, helping researchers navigate
analytical uncertainty when combining datasets from various open data portals, which
could otherwise result in a combinatorial explosion. LinkLens represents a significant
advancement in our ability to manage privacy risks in increasingly complex data
environments while still extracting valuable insights from diverse data sources. The
system’s interface enables users to explore and compare different join combinations
across multiple open data portals, providing a framework for decision-making in high-
consequence scenarios. Furthermore, LinkLens incorporates carefully designed visual
analytic interventions that facilitate the evaluation of both privacy risks and potential
benefits of combining datasets, allowing users to make informed decisions about multi-

way joins.
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Addressing analytical uncertainty in net load forecasting: Shifting
our focus to domain-specific applications of uncertainty mitigation, we developed
Forte, a visual analytics application for addressing analytical uncertainty in net
load forecasting. This system enables energy scientists and grid operators to assess
net load variability, analyze the effects of input variables on model performance,
and evaluate forecast uncertainties under various conditions. This tool provides
a broad understanding of various aspects related to net load forecasting, allowing
users to compare model forecasts with actual net load values across different seasons
and prediction horizons. It also offers insights into the impact of variables like
temperature, humidity, and apparent power on net load forecasts, thus providing
a tool for energy planners and grid operators to make more informed decisions.
Additionally, Forte enables stakeholders to understand how models react to noisy
inputs, ensuring that the system is effective in addressing the“known unknowns”.
This tool demonstrates the power of visual analytics in enhancing the interpretability
and reliability of complex AI models in critical domains such as energy planning.

Enhancing trust in AI models for net load forecasting: In our final
technical chapter, we extended the work on Forte to focus specifically on enhancing
trust in AI models for net load forecasting. This extension facilitates the comparison
of multiple models across various parameters, including solar penetration levels,
dataset resolutions, and different times of day. By enabling users to compare
forecasting models with reference models, this work provides a framework for
evaluating model performance and building confidence in results. This chapter
underscores the importance of trust and transparency in the deployment of AI models
in critical infrastructure planning.

The landscape of work presented in this dissertation spans from broad privacy
concerns in open data ecosystems to specific applications in energy forecasting.

Throughout these chapters, we have demonstrated the effectiveness of visual analytics
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in mitigating complex challenges tied to analytical uncertainty. Our work has
consistently emphasized the importance of human-in-the-loop approaches, where
interactive visualizations provide transparency and enable informed decision-making.
Looking to the future, this research opens up several promising avenues for further
investigation. There is a need for continued development of privacy-preserving
techniques that can adapt to evolving threats and data environments. The integration
of machine learning and Al with privacy-preserving visualizations presents both
challenges and opportunities for enhancing data protection and utility. Additionally,
the application of these techniques to other domains beyond energy forecasting could
yield valuable insights and tools for a wide range of data-driven fields. Ultimately,
this dissertation contributes to the broader goal of creating interactive workflows that
mitigate analytical uncertainty. We envision a data ecosystem that balances openness
and transparency with robust privacy protections. By providing tools and frameworks
for understanding and mitigating privacy risks, evaluating data utility, and ultimately
addressing analytical uncertainty, we aim to empower stakeholders at all levels to
make more informed decisions about data sharing, analysis, and application. As
our digital world continues to evolve, the principles and approaches developed in
this work will serve as important building blocks for future research and practical

implementations in privacy-preserving data visualization and analysis.
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