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Abstract—Geographical maps encoded with rainbow color scales are widely used by climate scientists. Despite a plethora of evidence

from the visualization and vision sciences literature about the shortcomings of the rainbow color scale, they continue to be preferred

over perceptually optimal alternatives. To study and analyze this mismatch between theory and practice, we present a web-based user

study that compares the effect of color scales on performance accuracy for climate-modeling tasks. In this study, we used pairs of

continuous geographical maps generated using climatological metrics for quantifying pairwise magnitude difference and spatial

similarity. For each pair of maps, 39 scientist-observers judged: i) the magnitude of their difference, ii) their degree of spatial similarity,

and iii) the region of greatest dissimilarity between them. Besides the rainbow color scale, two other continuous color scales were

chosen such that all three of them covaried two dimensions (luminance monotonicity and hue banding), hypothesized to have an impact

on task performance. We also analyzed subjective performance measures, such as user confidence, perceived accuracy, preference,

and familiarity in using the different color scales. We found that monotonic luminance scales produced significantly more accurate

judgments of magnitude difference but were not superior in spatial comparison tasks, and that hue banding had differential effects

based on the task and conditions. Scientists expressed the highest preference and perceived confidence and accuracy with the

rainbow, despite its poor performance on the magnitude comparison tasks. We also report on interesting interactions among stimulus

conditions, tasks, and color scales, that lead to open research questions.

Index Terms—Visualization, color maps, rainbow color map, user study
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1 INTRODUCTION

THERE is often a mismatch between visualization research
and visualization practice in scientific domains. In this

paper, we focus on one of the most popular, and often
debated, mismatches: the use of the rainbow color scale as a
means of communication and analysis of scientific data. In
particular, we focus on the use of color scales in climate
science, where they play a pivotal role. Climate being an
inherently geographical/spatial (and temporal) phenome-
non, scientists often produce maps to convey information
about how measures of interest distribute spatially across
the globe or other regions of interest.

Previous qualitative studies have shown that many cli-
mate scientists are in disagreement with, or unaware of, the
efficacy of perceptually corrected color scales [1], and prefer
to use the rainbow color scale as the de facto standard. This
paper is an attempt to analyze and explain potential reasons
for this mismatch. We describe the results of a web-based
user experiment that studies how different color maps affect
performance on a selected set of scientifically-motivated
tasks. The study is the result of a long-standing collabora-
tion between the authors and a group of experienced
climate scientists who helped us understand the specific set
of spatial data analysis tasks performed using continuous
geographical maps. Accordingly, we selected stimuli that
were carefully designed based on climatological metrics
that quantify differences in magnitude and spatial distribu-
tion between pairs of maps.

Why conduct another user study for evaluating color scales in
practice? The study was motivated by two observations.
First, although color scales have been the subject of exten-
sive visualization research, there are very few empirical
studies of color scales, on ecologically valid tasks with
domain experts and real-world data [2], [3]. Even with
some recent studies and theories [4], [5], we lack an under-
standing of how color scales affect the objective perfor-
mance of experts in spatial data analysis tasks involving
continuous geographical maps. Second, previous research
shows that familiarity and experience with an analysis
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medium influences its use and preference [6]. This web-
based study investigates how familiarity with the rainbow
color scale influences performance accuracy, experts’ sub-
jective impressions (e.g., perceived accuracy, preference,
etc.), and the relationships between objective and subjective
measures of performance. Studying these factors with a
group of highly skilled domain experts, under real-world
conditions, can shed light on the use and adoption of visual-
ization best practices in real-world domains.

In close collaboration with climate scientists, for the
study, we carefully selected three spatial data analysis tasks,
stimuli generated by selecting maps that differed in their
magnitude and spatial distributions, and color scales that
co-varied the perceptual dimensions of hue and luminance.
Our three main contributions in this paper are the follow-
ing: i) Domain and problem characterization for under-
standing climate scientists’ tasks using color-coded maps
that encode continuous variables, ii) Design of a user study
using those tasks and alternative color scales that address
the specific tasks of climate scientists but can be generalized
for related spatial data analysis tasks in other domains, and
iii) Analysis of scientists’ objective performance and their
subjective impressions about their perceived accuracy,
confidence, and preference of a color scale.

2 BACKGROUND AND RELATED WORK

In this section, we first provide a short introduction to the
problem of designing perceptually effective color scales.
Instead of using the term color “map” to describe the range
of colors mapped onto the range of a scalar variable, we
adopt the term color “scale”, reserving “map” for signifying
geographical maps. While describing the problem in full
detail is beyond the scope of the paper, the introduction
is meant to help the reader familiarize with the problem.
We then briefly describe related work on color scales design
and studies conducted to evaluate their effectiveness in the
context of spatial data analysis tasks.

2.1 Designing Perceptually Effective Color Scales
for Scalar Fields

The problem faced by color scale designers involves defining
a principled way of mapping data values to colors that com-
municate relevant data characteristics effectively and faith-
fully. In this work, we focus exclusively on color scale design
for 2D scalar fields: spatial visualizations in which a numeri-
cal value, sampled across a 2D region (typically geographi-
cal), is represented using color. This kind of representation is
very common in scientific and engineering disciplines, since
natural and computed phenomena can often be described as
numeric samples over a spatial region..

Color scale design typically involves the use of a particu-
lar color specification space (RGB, HSV, CIE Lab, Munsell,
etc.) and the definition of a mapping function, which deter-
mines, for a given range of numeric values, the color each
corresponds to. Human color perception has been studied
extensively in the vision science literature [7] and the litera-
ture has been reviewed recently in the visualization commu-
nity [8]. In the following, using the same convention used by
Munzner [9], we refer to a generic three-dimensional space
defined by the following three perceptual channels: Hue, the

color name, luminance, which represents the brightness or
value of the color, and saturation, which characterizes the
vividness. Hue, being perceived categorically, may not be
easily ordered, perceptually, and is more suited to the repre-
sentation of categorical information, and in the segmentation
of data points [10], [11].

In our experiments, we represent the perceptual dimen-
sion of perceived luminance in terms of L�, which is the
dimension representing perceived luminance in the LAB
color space. There are many color spaces in use in visualiza-
tion that have a color space dimension for this perceptual
dimension. The ones derived from RGB color space, for
example, HSV, or HSL, are not perceptually uniform, in the
sense that equal steps in V or L do not correspond to equal
perceptual steps. Since output devices in visualization, how-
ever, are not typically calibrated, there is considerable uncer-
tainty about the actual L* value presented to the observer.

Thus, we use the term “luminance monotonicity” to cap-
ture the idea that perceived increments in luminance should
be at least monotonic with increase in value. Using many
different color scales created in many different color spaces,
Rogowitz et al. [12] showed that all color scales with a
monotonic luminance component were able to effectively
represent the magnitude of spatial information, and that
most of the variance was carried by the magnitude of L�.
Rogowitz and Treinish [10], [13] observed that because the
luminance system has higher spatial frequency sensitivity
than the opponent color system [14], color scales designed
to represent the magnitude of fine resolution detail should
contain a monotonic luminance component.

2.2 Examples of Color Scales and their Properties

Visualization researchers have criticized the rainbow color
scale because of potential misrepresentation of the data, pre-
dominantly owing to its non-monotonically varying lumi-
nance [10], [11]. One of the reasons why climate scientists
prefer the rainbow color scale is the transition across multi-
ple hues (hue banding) leading to perceived fine-grained
representation of the data. However, in the rainbow color
scale, the perceptual transition between hues is not uniform
and therefore introduces bands and artifacts which can affect
perception of the data. Color scales like the “sequential”
color scale from Brewer’s Colorbrewer library correct for
luminance monotonicity [15], and they may also vary in hue
and saturation. Brewer also proposed the “diverging” color
scale has also been proposed for scalar data. The diverging
color scale has a saturated and low-luminance hue com-
ponent transitioning to another by passing through an
unsaturated, often higher-luminance, value in the middle.
For scientific data visualization, Moreland [16] has developed
a version of the diverging color scale, which has recently been
accepted as the default in ParaView [17]. Rogowitz and
Kalvin [18], found that luminance contrast, independent of
hue and saturation, drove the effectivenesswithwhich a color
scale represented the face. Based on this research, Kindlmann
et al. [19] developed a luminance-matching technique, which
could be used to create color scales that contained a range of
hues, with monotonically varying luminance. Due to the
banding effect of multiple hues, it was posited that such color
scales could both effectively carry magnitude information
while also providing segmentation information.
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Bergman et al. [20] introduced a rule-based system that
suggested appropriate color scales based on the data type
(ordinal, interval, ratio), spatial frequency, and on the task.
Tominski et al. [21] extended these ideas by proposing a
task taxonomy and appropriate color scales comparison,
localization, and data value identification tasks.

We used a sequential color scale from the ColorBrewer
library, and the color scale developed by Kindlmann
et al. [19] (henceforth referred to as the Kindlmann scale)
for our experiments. We study how continuous spatial dis-
tributions affect visual averaging and comparison using
color scales co-varying in hue and luminance.

2.3 Empirical Evaluation of Color Scales

Over the years, many researchers have conducted experi-
ments comparing the effectiveness of different color scales,
using both artificial stimuli and real-world conditions. In
order to isolate and study specific experimental variables,
many empirical studies in this field have relied on using
synthetic stimuli. Rogowitz et al. [12] constructed many
color scales as trajectories in luminance, saturation and hue,
in many color spaces, and measured increment thresholds
for detecting Gaussian patches visualized with these differ-
ent color scales. They found that for monotonic luminance
and monotonic saturation scales, the threshold for detecting
a change in magnitude was proportional to data value, with
luminance color scales providing the most sensitive results.
With color scales that varied in hue, much larger increments
in data value were needed for detection, and perceived
changes in magnitude were not proportional to changes in
data magnitude. Ware [22] used artificial stimuli to explore
users’ ability to read magnitude information from a region
on a visualization and map it onto a value on a color scale.
To emulate real-world medical imaging situations, Tajima
et al. [23] and Levkowitz and Herman [24] used the detec-
tion of artificial phantom “blobs” in medical images to
reveal advantages of the luminance grayscale over other
color scales, including the heated-body scale, which is
monotonic in luminance but varies in hue. Recently, Borkin
et al. [2] studied visual performance using the rainbow and
a diverging color scale proposed by Brewer [15], [25] in a
real-world setting. In this task cardiologists identified arte-
rial blockages from color-coded medical images. They
found a significant advantage of the diverging color scale
over the rainbow. Their findings are consistent with the
recent study conducted by Liu and Heer [4] where they
found that the rainbow color scale performed the worst in
terms of both efficiency and accuracy as compared to singe-
hue and other multi-hue color scales.

Spatial data analysis using color-coded maps have been
largely evaluated based on the task of identifying discrete
regions [25], [26], [27] from choropleth maps. Some previous
studies look at the effect of diverging color scale on percep-
tion of uncertainty for flood risk assessment [3] and the
comparison among encodings based on hue and texture for
estimating uncertainty involving wildfires [28]. However,
there is very little guidance on how to construct effective
color scales for continuous maps, because there are many
trade-offs involved in making a design decision about a con-
tinuous color scale, which have been recently described by
Bujack et al. [29]. In a recent work, Ware et al. [30] devise a

new way of quantifying perceptual uniformity of color
scales and conduct a Mechanical Turk study for under-
standing how feature resolution is affected by the design
choices. Their findings stress the importance of luminance
variation in influencing task performance. Reda et al. [5]
conducted a study with continuous color scales for under-
standing the effect of spatial frequency on color perception
based on alternative scales are chosen according to the
properties of luminance monotonicity and hue variation.
While their design criteria of luminance monotonicity and
hue variation are consistent with ours, they base their find-
ings on a set of value retrieval based tasks from a single
map. Our study is grounded in ecologically valid tasks and
real data used by climate scientists. We focus on visual com-
parison tasks by juxtaposing continuous geographical maps,
where scientists make judgments about relative differences
in magnitude and identify spatial similarities and dissimi-
larities. To the best of our knowledge, there exists little
empirical evidence in real-world setting evaluating such
spatial data analysis tasks based on visual comparison using
continuous color scales.

In our study, we also reflect on the relationships between
familiarity and perceived levels of accuracy and preference.
Our work complements that of Schloss and Palmer who
developed metrics for modeling individual preference of
color scales [31] and applied ecological valence theory [32]
for reasoning about the individual differences in preference
levels. We aim to understand if familiarity is a barrier in sci-
entists’ acceptance of potentially more effective color scales
and if participatory design can help mitigate the effects
of familiarity like recent user studies [33], [34] have
demonstrated.

3 DOMAIN AND PROBLEM CHARACTERIZATION

The findings presented in this paper are a result of a long-
standing collaboration between visualization researchers
and a group of climate scientists working on the Multi-Scale
Synthesis and Terrestrial Model Intercomparison Project
(MsTMIP) [35], which develops innovative solutions for the
comparison of complex climate models. We followed a two-
stage process for developing our understanding of the sci-
entists’ spatial data analysis goals and methods.

First, we interacted with two direct collaborators, both
climate scientists at the Oak Ridge National Laboratory,
over a period of six months for collecting examples of maps
and their corresponding analysis goals. We followed up our
interactions with in-person and online semi-structured
interviews, that helped us refine our understanding of these
goals. Second, we organized two face-to-face meetings and
many remote follow-up meetings with a bigger group of 10
climate scientists to understand in details what specific
questions they ask and judgments they make using color-
coded geographical maps. During these meetings, we pre-
sented examples taken from the scientists’ work and asked
them to describe what kinds of questions and visual opera-
tions they would perform when examining them.

In this section, we first describe the domain-specific spa-
tial data analysis goals and methods, as synthesized from
our discussions, and then characterize the problems rele-
vant to color scale selection.
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3.1 Types of Spatial Data Analysis Tasks

A common analysis routine performed by climate scientists
is using multiple maps for analyzing model outputs. These
maps typically represent outputs from different climate
models, at different time periods, and allow the scientists to
compare model behavior. An example of one such output is
the Gross Primary Productivity (GPP), which serves as one
of the ecosystem health indicators. Scientists generally per-
form visual comparison tasks through juxtaposition of these
maps [36] in a small multiple setting [37]. These visual com-
parison tasks can be classified into the following types:

Magnitude Comparison. In this task scientists visually
estimate the difference in global mean GPP among multiple
color-coded geographical maps. In the course of our inte-
ractions, visualization researchers pointed out that these
are expensive operations, and trivial solution could be to
simply calculate the “mean” value that can support the task
of quantitative comparison across different maps. However,
scientists mentioned that they perform these tasks in a
relative context: they use their visual judgment to verify
numbers that are computed by a metric and documented in
a table or they visually compare multiple maps of model
outputs to a map depicting observation data, whose mean is
already known. Webster et al. [38] showed that people can
successfully estimate average chromaticity of two hues, and
Maule and Franklin [39] showed the human ability to aver-
age across several hues and color boundaries for such tasks.

Spatial Distribution Comparison. This class of tasks invol-
ves analyzing the shape of global and local spatial distri-
butions. Climate scientists are interested in detecting the
degree of similarity among global spatial distributions of
different maps, and also in analyzing how different regions
contribute to that similarity. They also want to identify
regions that are most dissimilar across maps, and this gives
them an incentive to further explore the causes behind this
dissimilarity. This class of tasks is similar to the visual struc-
ture estimation tasks proposed by Szafir et al. ([40]) but
differ in the comparative nature of the tasks performed in
a small multiple setting.

3.2 Perceptual Characteristics of Color Scales

In this paper, we have focused on characteristics of color
scales which could have differential effects, depending on
the magnitude comparison and spatial distribution compar-
ison tasks. We chose the color scales based on the criteria
of luminance monotonicity and hue banding. Perceptual
uniformity of color spaces [29], [30] is another criterion we
considered. However, equal steps in a uniform color space,
do not ensure that the data magnitudes represented by
these steps will be equally discriminable when used in a
color scale [18], [30]. Equal JNDs in luminance perception
(L*) is a good measure to represent human luminance per-
ception, and a good predictor of the ability of the luminance
component in a color scale to “carry” magnitude informa-
tion. It does not, however, work for the other dimensions.
Most notably, equal steps along the iso-luminant plane,
which have large discriminable JNDs still do not “carry”
high spatial-frequencymagnitude information. For example,
face images produced with iso-luminant variations were
not visible ([12]), and high spatial-frequency features pro-
duced with stimuli that varied in hue and saturation, but not

luminance, were less visible even though they had equal
JNDs in a uniform color space [41]. Therefore, we did not
compute distances for our color scales in terms of JNDs in
a perceptually-uniform color space.

We discuss the rationale behind the chosen color scales
below.

Effects of Luminance and Banding. The first of these charac-
teristics is luminance monotonicity. Previous experiments
have shown luminancemonotonicity to be critical for carrying
magnitude information, and critical for faithfully represent-
ing magnitude variations in high spatial-frequency data, such
as the stimuli examined in climate modeling. The second fea-
ture is what we call “banding”. In the rainbow color scale, for
example, although the scale value increases monotonically
with data value, the perceived hue does not change continu-
ously. As in viewing a spectrum of light through a prism, we
perceive bands of hues–blue, cyan, green, yellow, orange and
red, which segment the data range into discrete regions.

Since monotonic luminance and banding are both pres-
ent in the Rainbow (RBW), we selected experimental color
scales that would allow us to understand their effects. Fig. 1
shows three different color scales which vary in luminance
monotonicity and banding. RBW has a non-monotonic lumi-
nance distribution; the luminance increases with data value,
bounces around a bit, then decreases. The Rainbow also
exhibits spatial banding. The hues do not vary continuously
over the range, but describe distinct hue regions.

Alternative Color Scales. For the studywe chose the jet color
scale in MATLAB that our climate scientist collaborators use
as a default. We chose two alternative color scales for our
study based on their luminance and banding properties.

The blues color scale (BLU) is a popular selection from
the ColorBrewer library [42], and has its roots in geographi-
cal map design. It has a single hue (blue) and is monotonic
in luminance. Equal steps in color scale value correspond to
measured increasing steps in perceived luminance. There is

Fig. 1. Perceptual characteristics of the three color scales in our study.
The first column shows these three scales (Blues, Kindlmann, and Rain-
bow) mapped onto the same climatological data. The two other columns
show the luminance profiles for each scale and whether they display
luminance monotonicity or hue-banding or both. By covarying these two
perceptual dimensions, this study explores their role for different spatial
data analysis tasks, like pairwise magnitude comparison and spatial dis-
tribution comparison for maps.
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minimal hue variation, and no hue banding, and since lumi-
nance is monotonic, there are also noMach bands [43], which
are perceptual discontinuities that can appear between
luminance steps. We did not test the divergent color scale,
also from the ColorBrewer library, because the scientists
we worked with felt that the divergent color scale would
incorrectly imply that there was a zero-crossing in the GPP

variable.
The second color scale we selected was suggested by

Kindlmann, et al. [19] as an alternative to the RBW. It uses
vibrant, saturated colors, while also providing monotonic
luminance. The scale runs from dark violet, through blue, to
green, to yellow to white. Despite the luminance monotonic-
ity, these hues appear as distinct bands, perhaps because of
the large hue angle swept by this color scale.

These three color scales (Fig. 1) allow us to separate out
the effects of luminance modulation and banding, since
these parameters covary across the three choices. BLU
and KIN are monotonic in luminance, but differ in band-
ing; KIN and RBW have hue banding, but differ in lumi-
nance monotonicity. Together, they make a useful set of
color scales for examining how these two features interact
in their effects on user performance in magnitude and
spatial similarity tasks.

Pre-AttentiveVision. The chosen color scales vary in another
important perceptual way, which relates to attention. Bottom-
up visual attention can be drawn “pre-attentively” to regions
that have a different hue or luminance, that is to say, they
have a pop-out effect for attracting attention. If the color scale
contains such regions, data falling in such a pre-attentive
range will be highlighted visually, even if values in this data
range are not important. For example, the “yellow” region in
the RBW has high luminance and appears very bright, so
regions in the map that happen to fall within this range
will attract attention. This could be a disadvantage, in that
the region that is highlighted may not be of importance to the
analytical task. Or, it could be an advantage, simplifying
the task and focusing attention on a range of the data that
could well be important. In fact, many practitioners using
the RBWwill manipulate its range to center the bright yellow
or dark red on phenomena of importance.

3.3 Potential Effects of Color Scales on Tasks

Given the existing research on color scales and their use
in visualization application, we outline our expectations
regarding the effect of color scales on the tasks.

Effect on Magnitude Comparison. In Section 2, we reviewed
several experiments in which luminance monotonicity was
critical to making magnitude judgments ([12], [22]): lumi-
nance modulation is especially critical where the data has a
high spatial frequency ([10]), as in geographical map appli-
cations. We expect, therefore, that the BLU and KIN color
scales with this property would be effective in the magni-
tude comparison tasks faced in climate modeling. It has
been suggested that adding a hue-variation would provide
additional information to the observer [19], since it provides
another channel of information. The Kindlmann color scale,
however, not only provides a hue modulation, it also intro-
duces perceived banding, which might reduce the observ-
er’s ability to make magnitude judgments. The semantic
hue regions might mask the effectiveness of the magnitude

cues provided by the monotonic luminance component of
the color scale.

Effect on Spatial Distribution Comparison. In practice, scien-
tists often use segmented color scales to see differences in
spatial distribution in their data. Since segmented color
scales are ordinal, by definition, they do not provide a com-
plete representation of all the data values, which are binned
into color categories, but this binning can reveal structures in
the data. We do not know of any study that explicitly com-
pares segmented with continuous color scales, but it seems
plausible that the banding produced in RBW and KIN color
scales could provide benefit in making spatial distribution
comparisons across geographies. These color scales, how-
ever, have the distinct problem, in that the size of the bands
are not equal, which means that some regions in the data
are differentially favored. In RBW, for example, the “blue”
region occupies a much larger range in the data scale than
the “yellow” region. That is, regions of low discriminability
will be unevenly spaced over the data range and may lead to
misinterpretation. Likewise, regions that are served by more
closely-spaced bands may produce higher discrimination,
since values in that region are sampledmore finely.

4 STUDY DESIGN

We designed a counterbalanced within-subjects experiment
in which each observer performed three tasks on four types
of map pairs, using three different color scales. We also col-
lected confidence ratings and concluded the session with a
survey that queried observers’ subjective impressions about
the different color scales. In this section, we describe all the
different elements of the study.

4.1 Task Selection

We have crystallized the types of spatial data analysis tasks
performed by climate scientists (Section 3.1) into three quanti-
tative tasks. We selected a magnitude comparison task (Task
1) and two spatial distribution comparison tasks (Tasks 2 and
3) for our study, that we describe below. In order to allow
all participants to be exposed to all color scales, we used
a repeated measures design, where each participant had to
perform a given taskwith all three color scales.

Task 1. In this magnitude comparison task, the partici-
pants compared the overall GPP in a reference map with
overall GPP in a test map, and made a numerical estimate of
the GPP in the test map. In this task, the fine spatial structure
of the GPP variations was not considered; the participants
simply provide an overall average estimate.

They were asked to answer the question: “Given the global
meanGPPbased on one map (A), what is the global meanGPPof
map (B)?”. For providing their answer, participants had to
adjust a slider, the range of which was set from the overall
minimum to the overall maximum of mean GPP, across all
models in the set of stimulus maps. To help participants
with an explicit reference point, the initial position of the
slider was set to the global mean GPP value of map A.

Task 2. In this spatial distribution comparison task, par-
ticipants compared two maps, but in this case, focused on
the spatial distribution of GPP, and judged the degree to
which the comparison and test maps exhibit a similar spa-
tial distribution of GPP. This was a very different task since
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two maps can have the same overall GPP, but very different
spatial distributions.

Participants were given two maps and asked the ques-
tion: “How similar are the spatial distributions of the two maps?”
They were provided with a Likert scale that had a continu-
ous range between 1 (most dissimilar) to 5 (most similar).
Task 2 was thus about comparing the degree of similarity
between two maps.

Task 3. This is also a spatial distribution comparison task,
however, in this case, when the participant compared the
two maps, they identified the region of maximum differ-
ence. Unlike the other two tasks, here the observer was not
making an overall judgment, pooled across the whole spa-
tial extent, but identified a single spatial region with the
greatest difference in GPP.

Participants were given the same pair of maps as in Task
2 and asked to answer the question: “In map A click on the
area that is the most dissimilar from the one on B”. Only a single
click was allowed and they had to select a particular point
on the map which they thought was the roughly the center
of the region. Task 3 was thus about dissimilarity identifica-
tion based on comparison of two maps.

Tasks 1, 2, and 3, are generally performed by climate sci-
entists in a multi-way comparison setting, where more than
two maps are involved. However, to simplify the tasks and
make them achievable within a reasonable amount of time,
for the study, we focused only on pairwise comparisons
with two juxtaposed maps.

Since both Task 2 and Task 3 belong to the same class of
structure (i.e., spatial distribution) estimation tasks, we
decided to share the same trials between the two tasks, with
both judgments made on the same map pair. There were
thus 48 trials, 3 color maps x 2 trials for each of four spatial/
magnitude quadrants x 2 tasks

Recording Scientists’ Subjective Impressions. Participants
indicated their level of confidence on a discrete five-point
Likert Scale. At the end of all the tasks, participants rated their
familiarity, preference, perceived accuracy, and comfort in
performing the tasks with the different color scales, and pro-
vided comments about the rationale behind their choices.

4.2 Hypotheses

Given the established link in the literature between lumi-
nance monotonicity and magnitude judgment, we predicted
that performance in Task 1 (overall magnitude comparison)
would be better with the two color scales with that property,
which are BLU and KIN.

Task 2 involved comparing spatial distributions of GPP.
If observers are simply making a magnitude judgment, then
we would expect, again, that color scales with a monotonic
luminance profile would enable the best performance. How-
ever, if the judgment is based on locating specific regions in
the data, or if segmentation helped to reduce the complexity
of the judgment, then we would expect that the two color
scales with spatial banding would provide the best perfor-
mance. And, if both segmentation and luminance monoto-
nicity were at play, then the KIN color scale would be
predicted to provide the best performance.

Task 3 required the observers to select the region of
greatest dissimilarity. In cases where the maps are dissimi-
lar, this would involve identifying regions that are at the

lower end of the scale in one map and at the higher end of
the scale in the other. The bright white at the top of the KIN
range or the saturated red at the top of the Rainbow might
attract attention to this disparity, but may not be as effective
when the two maps are similar.

Since the climate scientists in this study were most famil-
iar with the Rainbow, since it is the de facto standard in
their field, we expected that they would feel more confident
using it than the two less familiar color scales.

In the subjective survey, we expected the scientists to
express higher familiarity, ease of use, preference and confi-
dence with the Rainbow color scale, since it is their common
tool. If self-assessment of their own performance matched
their actual performance, we would expect perceived accu-
racy to follow objective accuracy. This is an important
measure, since introspection often guides choices in visualiza-
tion, and amismatch between introspection and realitywould
be a valuable observation.

4.3 Selection of Stimuli

Based on our general hypotheses and comparison based
tasks, we aimed at generating pairs of maps that differ
with respect to two main factors: magnitude and spatial
distribution (Fig. 2). We describe the metrics and the stimuli
generation process below. Examples of the map pairs are
shown in Fig. 3.

Generating Similar and Dissimilar Map Pairs. We selected
stimuli for the experiment by grouping pairs of maps into
four bins according to the scheme: low/high difference in
magnitude and low/high difference in spatial distribution.
For instance, two maps can have a similar distribution of
values across the maps but different overall magnitude. As
shown in Fig. 3, it is possible to have maps with similar spa-
tial distribution but different magnitude (top right) as well

Fig. 2. Selection of stimuli based on the magnitude and spatial character-
istics of maps. We used a spatial difference metric (RMSD) and a GPP

magnitude differencemetric (AMD), that climatologists use as part of their
analysis, to characterize a large pool of map pairs. For these experiments,
we identified the upper and lower quartiles for each metric, as marked by
the red dotted lines. We randomly selected 8 pairs of maps, co-varying
low versus high-spatial difference (rows) and low versus high- magnitude
difference (columns).We showexamples of map pairs in Fig. 3.
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as maps with different spatial distributions but similar mag-
nitude (bottom left). It is important to notice that while these
differences may seem hard to understand by a non-expert,
climate scientists are highly trained to derive this informa-
tion from the color-coded maps.

In order to automatically generate map pairs that fall into
the four groups outlined above, we leveraged metrics that
climate scientists regularly use to quantify the difference
between two maps in terms of magnitude and spatial dis-
tribution, and derived two measures after consulting our
collaborators: Root Mean-Squared Difference (RMSD) to quan-
tify the difference between two spatial distributions and
Absolute Magnitude Difference (AMD) to quantify the differ-
ence between two global mean GPP. RMSD is obtained by
comparing corresponding intensity values pixel-by-pixel
between the twomaps using euclidean distance. Both of these
metricswere area-weighted as equatorial regions have higher
climatological weight than tropical regions. Map pairs have
similar global mean GPP when AMD is low and similar
spatial distributionswhen RMSD is low.

Fig. 2 shows how maps were generated systematically
from the distribution of these metrics. In order to create
effective stimuli we selected, for both measures, map pairs
in the lower quartile, to generate cases of high similarity,
and those in the upper quartile to generate cases with low
similarity. Accordingly we have four bins in the data: simi-
lar global mean GPP and similar spatial distribution, similar
global mean GPP and dissimilar spatial distribution, dissim-
ilar global mean GPP and similar spatial distribution, and
dissimilar global mean GPP and dissimilar spatial distribu-
tion. Examples of these map pairs with the three color scales
are shown in Fig. 3.

Ensuring Variability and Coverage. Our maps pairs are gen-
erated using the GPP variable from 6 models (BIOME,
GTEC, SIB3, CLM, CLM4VIC, LPJ) [44]. Each model has a
spatial resolution of 360� 720 and monthly temporal reso-
lution of 360 time steps (30 years). The greatest variability
in the model outputs is generally found across different
seasons be it a same or different year. However we did
not want to pick and choose the data from seasons of

Fig. 3. Example map pairs illustrating our selection of stimuli based on pairwise differences in magnitude and spatial distribution: This figure shows
color map pairs in each of the four quadrants defined in Fig. 2, showing pair that co-vary in spatial and magnitude difference. Examples are shown
for Rainbow (RBW), Blues (BLU) and Kindlmann (KIN) in the three sets. The maps were carefully selected based on the distributions of the climato-
logical metrics: RMSD and Absolute Magnitude Difference. These metrics are used by climate scientists for quantifying differences between maps.
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a particular year, as some events might affect that GPP for a
region in a particular year, and we would not be able to
account for that. Instead, to ensure variability we selected
10 random time steps for each model and compare against
all the time steps of all the other models. Thus, we have in
total 108,000 pairs (6 models � 5 models � 10 random time
steps � 360 time steps). This not only ensured variability in
the data but also a coverage of the data points. Eventually
the map pairs for our study were selected from these pairs,
based on our definition of stimuli as described previously.

4.4 Participants and Trials

We selected our participants for the main study ano-
nymously through mailing lists of climate scientists, and
39 participants completed the study. Among them, 24 were
male and 15 were female. Since 3 of them were identified as
having color deficiencies, we excluded their responses from
our analysis. The participants were aged between 24 and 65,
with the median experience being 10 years in climate sci-
ence and 6 years of using color scales with maps. The range
of their overall experience was between 0 and 33 years.

Each participant completed all tasks and trials. The tasks
were ordered sequentially and the trials were randomized
to mitigate learning effects. Since there were 48 trials for
each participant, the total number of trials was 48� 36 ¼
1728. Tasks were always presented in the same order for
each participant. However, the order of stimuli was ran-
domized for each participant for a particular task. We did
not impose any time restrictions for each trial or task as in a
web-based study it is difficult to reliably control and ana-
lyze the effect of stimuli on response time.

4.5 Study Setting

Before deciding the final settings for the study, we con-
ducted a pilot study, where we could build confidence in
the tasks and color scales, and explore variations in the flow
of the study, and check our training method for the partici-
pants. Participants who took the pilot tests were excluded
from the main study.

The experiments reported in this study were all web-
based. This setting was necessary as all our participants in
the study are climate scientists spread across different aca-
demic institutions and research labs across the United States
and Europe. One of the critical issues with our study is to
ensure reliability and minimize bias in the results. In our
experimental set-up we took several measures to address
these. First, we took care of the case where participants did
not understand the question or if they were ready for the
test. To this effect, we showed them example questions and
let them quit the study if they did not understand the ques-
tion. They could not go back to check there answers or get
feedback on the correctness of their responses. The IP
address of the participants was recorded, so that we could
know if the same participant has responded twice. Even if
they stopped the study and took a break, they had to start
from where they left off. This ensured prevention of unin-
tentional repetition of the tasks by a participant.

5 METRICS FOR JUDGING ACCURACY

In this section, we discuss themetricswe used to quantify the
accuracy in the participants’ judgments across the three

tasks. The metrics we used were aimed at quantifying the
error in participants’ judgment as compared to the ground
truth that was generated based on spatial distribution and
magnitude difference of maps, whichwe illustrated in Fig. 3.

5.1 Magnitude Comparison (Task 1)

Task 1 was performed by estimating a magnitude, i.e.,
global mean GPP of one map relative to the global mean
GPP of another map. This was similar to the task of compar-
ing the size of bars that was presented in the well-known
study by Cleveland and McGill [45]. While in that case par-
ticipants directly had to mention the degree to which bars
were bigger or smaller, in our case participants provided an
absolute value for the second map, and we derived the
degree of overestimation or underestimation by normaliz-
ing the estimated GPP values with respect to reference GPP

value. The error metric is thus derived as follows:

JudgedPercent ¼ Estimated GPPB

GPPA
� 100

True Percent ¼ True GPPB

GPPA
� 100

Error ¼ jJudged Percent-True Percentj:

5.2 Degree of Similarity Comparison (Task 2)

The similarity comparison task was performed using a con-
tinuous Likert scale where 1 indicated lowest similarity and
5 indicated the highest similarity. As discussed in Section 4,
the ground truth for generating maps was based on the dif-
ference in spatial distribution and magnitude. The RMSD
metric quantified the difference or dissimilarity in spatial
distribution between two maps: the larger an RMSD value,
the more different were the distributions, while a smaller
RMSD value indicated a smaller difference. For gauging
the accuracy of this comparison task, we observe the inverse
correlation between perceived similarity (Likert scale
responses) and computed dissimilarity (based on the RMSD
metric). The greater the correlation, the more accurate would
be the visual comparison using a particular color scale.

5.3 Dissimilarity Identification (Task 3)

For Task 3, which was the task about identifying the most
dissimilar region between two maps, we first compute the
difference maps, where each point on the difference map
indicates the absolute difference in GPP between two maps.
From this difference map, we derive two values: value of
the subject’s click position in the difference maps (clickdiff)
and maximum difference between map A and B (maxdiff).
The error in dissimilarity judgment is given by

Error ¼ 1� click
diff

=max
diff

:

The error varies from between 0 (no error) to 1 highest
error. This metric captures how well a subject was able to
select an area of maximal difference. In order to avoid effect
of noise in our data, we compute clickdiff and maxdiff using
a Gaussian kernel in the pixel’ neighborhood with s ¼ 2.

6 RESULTS

We measured climate scientists’ ability to judge magnitude
similarity (Task 1), spatial distribution similarity (Task 2), and
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maximum difference (3) between two maps. The magnitude
similarity and spatial similarity of the map pairs were co-
varied in a counterbalanced design, and all pairs were judged
using three color scales (BLU, KIN and RBW). We fit a mixed
effects analysis of variance (ANOVA) model, with a normal
conditional distribution and random effects for repeated
measured to account for the non-independent nature of
the data [46]. We include visualization type, magnitude, and
spatial distribution as fixed effects, and participant as a
random effect. We employed a mixed effects model since it is
more robust and makes fewer assumptions than a repeated
measuresANOVAmodel: it can copewithmissing outcomes,
time-varying covariates and relaxes the sphericity assumption
of conventional repeated measures ANOVA. For these rea-
sons, it is now becoming more commonplace to use a mixed
effects model to analyze data in many domains [47] that
used to be done by a repeated measures ANOVA design.
We conducted post-hoc comparisons using the t-test with
Bonferroni correction.

In this section, we report on the objective performance
results in different conditions of magnitude and spatial distri-
bution for three color scales. We then report on the subjective
impressions that were recorded through a survey at the end
of the study. For all our results we computed the 95 percent
confidence intervals using the bootstrappingmethod.

6.1 Magnitude Comparison

Task 1 addressed magnitude comparison: judging the
global mean GPP in one map with respect to the given refer-
ence GPP for another map.

Overall Effect. In Fig. 4a we plot the absolute % error in
judging the magnitude difference between map pairs and
95 percent confidence intervals for the three color scales
(BLU, KIN, and RBW). Significant differences between color
scales is indicated by the asterisks below the x-axis labels.
The first panel (a) shows overall performance across condi-
tions. Panels (b) shows the break-down by Spatial Distribu-
tion; Panel (c) shows the breakdown by Magnitude. Overall
(a), the two monotonic luminance scales were more effective
in helping the analysts make correct judgments about the
global mean GPP than RBW. Users had a significantly higher
error rate with RBW (Mean: 37 percent, CI: [34.3, 39.5]), and

significantly fewer errors with KIN (32 percent, [29.1, 34.3])
and BLU (24 percent, [21.5, 26.7]) , showing F(2,930) = 16.75,
p < :001. The performance with BLU was significantly bet-
ter than RBW (p < :001), and KIN (p ¼ :003), and perfor-
mance with KIN was significantly better than with RBW
(p < :001).

Effect of Spatial Distribution. In Fig. 4b we drill down with
respect to similar and dissimilar spatial distributions
between maps. The ordering of results for the three color
scales is the same in both conditions, that is, RBW produces
the highest error, followed by KIN, and followed by BLU.
All these differences are significant when the maps being
compared are spatially similar (F(2,465) = 20.29, p < :001),
where the BLU (Mean: 29.0, CI: [25.4, 32.7]) led to signifi-
cantly fewer errors than RBW (49.4, [45.8, 53.1]; p < :001)
and KIN (42.4, [38.7, 46.0]; p < :001) and KIN led to signi-
ficantly fewer errors than the RBW (p ¼ :005). There was a
significant, but weaker, effect of color scales when the maps
being compared were spatially dissimilar (F(2,465) = 3.38,
p ¼ :035) with only the difference between RBW (24.3,
[20.7, 28.0]) and BLU (19.1, [15.5, 22.8]) being significant
(p ¼ :038). Thus, RBW color scale affords less accurate com-
parisons of magnitude, whether the spatial distributions are
similar or dissimilar, but the degree to which the monotonic
luminance scales outperform is much greater when the
maps are similar. This also shows clearly that the task
of comparing GPP is much harder with multi-hue color
scales when the maps have similar spatial distributions. The
amount of error using RBW is almost twice that when using
the BLU, while the error using BLU is comparable for both
similar and dissimilar spatial distributions.

Effect of Magnitude. Fig. 4c shows the break-down by
magnitude difference for the Magnitude estimation task.
When the comparison maps are similar in magnitude (F
(2,465) = 13.12, p < :001), performance with BLU (Mean:
16.1, CI: [12.4, 19.8]) was significantly better than with RBW
(30.5, [26.8, 34.1]; p < :001), and KIN (21.8, [18.1, 25.4];
p ¼ :024), performance with KIN was significantly better
than with RBW (p ¼ :024). When the comparison maps are
dissimilar in magnitude, the performance with BLU (32.0,
[28.4, 35.7]) was significantly better than the RBW (43.3,
[39.7, 26.8]; p < :001) and KIN (41.6, [38.0, 45.3]; p < :001).

Another interesting observation in these data is that there
were significant differences between conditions. Partici-
pants had a very hard time judging magnitude differences
when the spatial distributions of the pairs were dissimilar
or when the magnitudes were similar. Despite large differ-
ences in the difficulty of the task, however, the best perfor-
mance was achieved using BLU and KIN, the two color
scales with monotonic luminance. We can also see that the
BLU scale afforded better performance than the KIN, whose
luminance range is higher. This suggests that the hue modu-
lation in KIN did not enhance magnitude estimates, and
may have had a detrimental effect, countering the benefit of
its monotonic luminance component.

6.2 Spatial Distribution Comparison

Task 2 was about judging the degree of similarity between a
pair of maps. We evaluate the performance on Task 2 by
looking into the inverse correlation between perceived simi-
larity and computed dissimilarity as was described in

Fig. 4. Task 1 (Magnitude Comparison) Results: Percent error in judging
GPP magnitude (using metric defined in Section 5.1) is plotted for three
color scales (BLU, KIN and RBW) across all conditions (a) and with drill-
downs for variations in Spatial Distribution (b) and Magnitude (c). Signifi-
cant differences between color scales (p < 0:05) are annotated in the
figure. We found the same ordering for the degree of error across all
conditions, i.e., the BLU being the best and the RBW being the worst
and most of the differences being statistically significant.
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Section 5.2. As shown in Fig. 5, the expected pattern is an
inverse correlation between perceived similarity on the
Y -axis and computed dissimilarity, using the RMSD metric,
on the X-axis: perceived similarity based on the Likert scale
responses increases along the Y -axis from 1 (most dissimilar
pair) to 5 (most similar pair) and computed dissimilarity
based on the RMSD metric increases along the X-axis. We
further drill down into the categories of similar and dissimi-
lar GPP magnitude (Fig. 5). The correlation values for the
BLU scale are identical across the two magnitude condi-
tions, but RBW and KIN show noticeable differences. For
map pairs with similar magnitudes, RBW and KIN exhibit

much poorer correlation between perceived and computed
ground truth. Also, note the change in orderings: RBW per-
forms the best for the dissimilar magnitude case, BLU per-
forms the best for the similar magnitude case, while KIN is
always in the middle.

Task 3 was about identifying the region of maximal
difference. Fig. 6 shows performance in this task using the
error metric derived in Section 5.3. Overall, the performance
with BLU (Mean: 44.9, CI: [40.5, 49.4]) was worse than with
KIN (39.4, [34.9, 43.8]) and RBW (41.2, [36.7, 45.6]). There
was no statistically significant difference in performance

Fig. 5. Task 2 (Spatial Distribution Comparison) Results.: Perceived
similarity (as rated on a Likert scale) as a function of computed
dissimilarity (given by the RMSD metric) for the two magnitude condi-
tions. Inverse correlation is an expected pattern. We can observe that: i)
Performance with BLU was not affected whether magnitude was similar
or dissimilar. ii) Both KIN and RBW’s correlations improved when the
maps’ magnitudes were dissimilar, and this was especially true for RBW,
which had an r ¼ 0:7 in the dissimilar magnitude case.

Fig. 6. Task 3 (Identification of Region of Maximum Difference) Results
Percent error in identifying the most dissimilar region (using metric
defined in Section 5.3) is plotted for three color scales (BLU, KIN and
RBW) across all conditions (a) and with drill-downs for variations in Spa-
tial Distribution (b) and Magnitude (c). Significant differences between
color scales (p < 0:05) are annotated in the figure. We found that dis-
similarity judgment is affected by the color scales. Performance using
the BLU color scale was worst in all of the cases, with significant differen-
ces from KIN in the overall and dissimilar spatial distribution case, and
from KIN and RBW in the similar magnitude case.

Fig. 7. A case from Task 3 where the maps had dissimilar spatial distributions and dissimilar magnitude. The top two rows show the two comparison
maps used in the study, with the difference map shown in the third row, for RBW , KIN and BLU . In this case, 20 percent of the observers clicked on
a region of South America that did not have a particularly high difference. This error was not made with the BLUmap.
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between KIN and RBW (F(2,930) = 2.316, p ¼ :100). The dif-
ference between the BLU and the KIN, was significant
(p ¼ :009). This result is echoed in the Dissimilar Spatial
drill-down (panel b, where F(2,465) = 4.70, p ¼ :009) and in
the Similar Magnitude case (panel c, where F(2,465) = 4.81,
p ¼ :008). In panel (b), the difference between the BLU (31.6,
[26.2, 37.0]) and the KIN (24.9, [19.5, 30.4]) was significant
(p ¼ :034) and, in panel (c), the BLU (44.5, [39.1, 49.9]) pro-
duced significantly more errors than the KIN (36.0, [30.6,
41.5]; p ¼ :025) and RBW (37.4, [32.0, 42.8]; p ¼ :007).

In Fig. 7 we show an example of the variance in the
clicked regions across different color scales. The third row
provides a visualization of the actual difference in GPP for
that pair. The dots indicate the geographic regions identi-
fied as being the most different. In this example, we see gen-
erally good agreement between performance using the three
color scales. However, this agreement does not necessarily
match the regions of greatest actual difference. When using
the RBW and KIN color scales, many observers identified
northern South America as containing regions of maximal
difference, even though the physical difference between
maps in not high in that geography. This error is not as
evident with the BLU scale.

6.3 Analyzing Subjective Performance Measures

One of the goals of our study was to compare the perceived
accuracy and confidence of the scientists with the objective
measures from the study. To this effect, we asked partici-
pants to rate their level of confidence for each task, and col-
lected their subjective feedback in last section of the study.
We collected feedback about their familiarity, preference,
confidence, perceived accuracy and ease of use of the color
scales, by asking questions such as: “which color scale did
you prefer the most”, “which color scale were you most con-
fident with”, etc. In this section we present an analysis of
their task-wise confidence ratings, their subjective impres-
sions, and the effect of domain experience on their ratings.

6.3.1 Task-Wise Confidence Ratings

We analyzed the confidence rating results for all the tasks.
Participants seemed to be more confident with Task 2 and 3,
with the average confidence levels being higher. Analyzing
the effect of color scales on confidence ratings, we found that
overall the scientists were least confident with the BLU: they
were more confident on average with the RBW than the BLU
(p ¼ :004) and more confident on average with the KIN than
the BLU (p < :013).

We also compared their objective performance, using
the error metrics for the different tasks with their perceived
confidence levels. We expected scientists to commit fewer
errors when they were more confident. However, for Task 1
we found the average confidence level for BLU was slightly
lower (3.04) than KIN (3.26) and RBW (3.26), despite the
average accuracy being greater. Also, at high self-rated con-
fidence levels (greater than 3), the average degree of error
was much higher in RBW (37.4 percent) than BLU (24.7 per-
cent) or KIN (31.4 percent), thereby showing a discrepancy
between scientists’ confidence and accuracy levels. For Tasks
2 and 3, we did not find any noticeable variability in error
with respect to high or low confidence levels.

6.3.2 Post-Study Survey

The results of the post study survey are shown in Fig. 8, and
we comment on the general trends below.

Perceived Accuracy and Confidence versus Familiarity. Since
the RBW is the de facto standard in climate science, it was
not surprising that over 94 percent responded that they
were most familiar with it. Despite the familiarity with the
RBW among an overwhelming majority of them, nearly
25 percent of the participants felt more accurate or confident
with either the KIN or the BLU.

Familiarity versus Preference. Comparing familiarity to
preference, we observe a difference of nearly 40 percent for
the RBW, which is compensated by more participants pre-
ferring either the BLU or the KIN. Given the high familiarity
with the rainbow color scale, this difference is significant.
We can observe that the subjective preferences of a signi-
ficant number of climate scientists were in favor of a rela-
tively unfamiliar, perceptually corrected color scale for
the specific study conditions. Following are some of their
comments that demonstrate, although the scientists were
overwhelmingly positive about the Rainbow, they could
recognize its liabilities and advantages of the other color
scales, especially KIN:

“Kindlmann works best because it has both good tone
contrast AND value contrast across the spectrum, whereas
rainbow has good tone contrast but little value contrast and
blues has little color contrast and not great value contrast.”

“It was easier to see magnitude of change with rainbow,
and especially hotspots in red. My concern was that I was
overestimating the red areas and not paying enough atten-
tion to changes at the other end of the spectrum. I thought
my first sense of overall global pattern change was easier
with blues but it was much harder to compare changes in
spatial pattern or magnitude between different regions.
Kindlmann was therefore a compromise for me...not as dra-
matic, did not highlight the hotspots as much, but allowed
me to compare differences more easily across regions”.

Effect of Experience. We also looked at the effect of experi-
ence on the subjective impressions of the participants.
We wanted to investigate if greater domain experience
has any effect on the perceived confidence, accuracy and com-
fort levels with different color scales. We used the median
of the self-reported years of experience of the participants to
divide them into high and low experience groups. However,
we failed to find any significant effect of experience.

Fig. 8. Analyzing subjective impressions of participants. The Y -axis
represents the percentage of responses for each category. an over-
whelming majority of the participants also expressed preference for the
RBW despite its lowest performance accuracy for Task 1, and its compa-
rable performance for Task 2 and Task 3 with respect to BLU and KIN.
Also, despite their overall familiarity with the RBW, about 43 percent of
the participants preferred the KIN or the BLU and 33 percent felt they
were more accurate with them in their post-study survey.
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Marginally higher percentage of less experienced participants
showed greater post-study preference for color scales other
than theRBW, but none of these effects were significant.

7 DISCUSSION

In this section, we summarize our key findings about the
effect of color scales on objective and subjective perfor-
mance measures, how they relate to our hypotheses and the
open research questions that our findings lead to.

7.1 Magnitude Comparison

In Task 1, we found that visual performance in judging
the magnitude difference between climate maps was best
using color scales with a monotonic luminance component.
Judgments with BLU scale had the fewest errors, followed
by KIN, and last, by RBW. This ordering was observed in
the average across conditions, and also in the drill-downs
by magnitude and by spatial distribution. This is a strong
and also statistically significant result.

Effect of Luminance Monotonicity. Since the two scales with
monotonic luminance enabled the best performance, clearly
this factor plays a major role. However, closer examination
reveals that the situation is more complex, since the lumi-
nance modulation for KIN was greater than for BLU (Fig. 1).
If luminance modulation were the only driving factor, KIN
would thus be expected to provide the better performance
in magnitude judgment.

Effect of Hue Banding. The observation that performance
is worse with KIN than BLU also challenges the notion that
variations in hue would facilitate magnitude judgments,
providing an extra channel for signaling magnitude signal
[22]. One possible explanation is that the banding in the KIN
color scale actually inhibited the judgment of magnitude.
If changes in data magnitude are less salient to the user if
they occur within a hue band, missing that information
would be expected to reduce magnitude judgment perfor-
mance. Likewise, if bands in the KIN or RBW color scale arti-
factually enhanced the magnitude of the data in a particular
range, that could also produce errors in judgingmagnitude.

Scope for Future Research. In future work, it would be
valuable to create a set of color scales that explicitly co-
varied luminance monotonicity and hue banding. One
method for doing so would be to vary the hue trajectory of
the hue-varying monotonic-luminance scale. In the KIN
color scale, the colors sweep a large angle around the hue
circle, from dark purple to blue to green through yellow
to white. Several authors [11], [48] have argued about an
advantage of the heated-body color scale, which is mono-
tonic in luminance but covers a narrow hue angle, ranging
from dark red through orange to yellow and white. To fur-
ther compare the perceptual effects of monotonic luminance
and banding, color scales could be constructed that had
identical luminance modulations, and carefully-constructed
hue and saturation variations.

7.2 Degree of Spatial Similarity Judgment

In Task 2, if we average across conditions, all three color
scales provided equal benefit to the observers. Differences
were observed however, when looking at the drill-downs by
magnitude similarity. When the comparison maps were

similar, the results agreed with those of the magnitude esti-
mation task; the best color scale was BLU, followed by KIN
and then by RBW. When the comparedmapswere dissimilar
in overall magnitude, however, the ordering was different.
Using the BLU color scale produced less correlation between
perceived and computed similarity thanwithKIN andRBW.

Nature of Spatial Judgments. The nature of spatial judg-
ments can be understood based on Bertin’s proposed read-
ing levels of the human vision system [49]. It may be, when
twomaps have similar spatial profiles, there are fewer salient
spatial features. The judgment possibly occurs at an elemen-
tary level, where scientists look at the relative value encoded
by the color of each pixel. Since colored pixels have no spatial
extent, the human vision system is good at recognizing the
average value of an area, and the size of those areas [50]. The
perceptual problem reduces to a magnitude judgment,
where monotonic luminance has a clear advantage as shown
in Task 1. When the maps are spatially dissimilar, there are
fewer local cues, and judging shapes across spatial regions
may rely on other mechanisms. The judgment possibly
occurs at an intermediate level, where they look at the shapes
of distributions formed by the pixels, and the task involves
visually segmenting regions and judging their magnitude.

Effect of Hue-Banding. In case of intermediate levels of
judgments, hue-banding can help in segmenting different
regions. As we discussed in the introduction, both the Rain-
bow and KIN’s hues segment the data range into regions
with semantic color names. This de facto segmentation
might help identify regions in maps that had spatially-
adjacent regions with similar values, making the spatial
judgment easier.

Scope for Future Research. To study this possible interac-
tion effect (luminance monotonicity better for similarity
judgments when the maps are similar, and hue-banding
being better when the maps are dissimilar) would require
exploring maps with carefully-controlled spatial modula-
tions. The climate map is a very complex, high spatial-
frequency stimulus. It has been demonstrated [13] that seg-
mented color scales are more effective for representing
changes in low spatial-frequency data, so an interesting
experimental manipulation might be to explore this possible
interaction effect at a range of spatial frequencies.

7.3 Identification of the Most Dissimilar Region

In each trial in Task 3, the observer identified the region in
the test map that was most different from its corresponding
region in the comparison map, and this judgment was com-
pared with ground truth. Overall, the BLU color scale was
the least useful to the observer in making this judgment,
suggesting that the observers were not basing their choices
solely on magnitude judgments. The KIN color scale
enabled significantly better performance than the BLU,
overall in two of the drill-downs. KIN and RBW were never
significantly different, suggesting that a common character-
istic drove their performance.

Effect of Pre-Attentive Vision. One possibility is that the
RBW and KIN color scales are providing visual cues that
guide attention to specific regions in the data range where
the color is particularly bright or prominent. Fig. 7 shows a
set of map pairs where observers using KIN and RBW iden-
tify an area in eastern Colombia as being a region of
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maximum difference when clearly it is not. Looking at the
two color scales, we see that even though this is not a region
of highest difference, that region in one of the maps just hap-
pens to fall in the prominent “yellow” region of KIN and the
“red” region of RBW. In this case, it is interesting to note, this
regionwas not falsely called out using the BLU scale.

Scope for Future Research. It may be, thus, that attention is
falsely drawn to a region, because those data values just
happened to fall on salient colors. To test this hypothesis
further, we would want to construct color scales in which
the highlighted region could be manipulated with respect
to the data, to measure the extent to which an errant high-
light could distort judgments.

7.4 Subjective Impressions

In a post-experiment survey, all the participantswere asked to
judge the color scales on a number of attributes (Fig. 8). For
subjective measures of accuracy, confidence, ease, familiarity,
preference we found that: RBW, unsurprisingly, has much
higher scores for all of these metrics (that is, all of our partici-
pants found RBW more accurate, felt more confident in the
results, found it easier to use, more familiar and preferred it
over the others), but with different proportions. The fact that
proportions differ points to interesting interpretations.

Perceived versus Objective Accuracy. Another very interest-
ing finding is that although 70 percent of respondents
marked RBW as being subjectively more accurate, our
results do not seem to point to any advantage, in terms of
accuracy, of RBW over the other color scales. In fact, Rain-
bow was the least effective color scale for magnitude judg-
ments. This is a very important finding: there is a mismatch
between the subjective perception of how accurate one is
and how one actually is.

Familiarity versus Preference. When comparing familiarity
to preference we observe a major shift. Many of our
respondents prefer KIN or BLU even being more familiar
with RBW. Unfortunately, given the setup we used for the
experiment, we do not know whether this observed shift
has been induced by the study itself or just a prior prefer-
ence our participants had before participating to our study.
In any case this results demonstrate a certain degree of
awareness of the potential issues with RBW and the fact
that for some datasets in some conditions other color scales
may be appropriate.

Scope for Future Research. Recent research has shown: i)
visualization tools have the potential to inspire a higher
level of trust in analysts as compared to more familiar meth-
ods [33], and ii) effective visualization design can lead to
greater performance accuracy in visual comparison based
judgments, as compared to more familiar visual representa-
tions of climate models [34]. However, in this study, we
found that an overwhelming majority of climate scientists
indicating their preference for RBW due to prior familiarity
despite their preference not being reflective of their actual
performance in any of the tasks. As indicated by More-
land [51], one of the key reasons is that the RBW scale is
deeply “entrenched in scientific visualization”, the default
scale for many tools, and therefore, scientists keep using it
out of a kind of inertia. This hinders the adoption of poten-
tially better color scales. We believe that an effective way
forward is to conduct more studies with domain experts

and their data for demonstrating the value of perceptually
more optimal color scales. In the future, we will conduct
more experiments to this end that will help influence scien-
tists’ preference levels and provide them with better design
choices for solving their tasks.

8 CONCLUSION AND FUTURE WORK

Using color scales to represent data values is one of the most
important and ubiquitous operations in visualization. The
color scale selected may be guided by conventions in a par-
ticular field, by the choices available in the visualization sys-
tem being used, or by perceptual research, which over the
past 20 years, has offered advice on which color maps to
use for particular situations, or which color components
in the color scale itself best communicate specific features in
the data. Some of this guidance has been very simplistic, as
in “never use a Rainbow color scale”, and some has been
very abstract, such as measuring the effectiveness of differ-
ent color scales on artificial stimuli. Attempts have been
made to develop taxonomies that can help the practitioner
select appropriate color scales, either building on the data
type, perceptual operations, or different tasks. But, these
perceptual operations and tasks, so far, have been quite sim-
ple, and with a few exceptions, have not been conducted
with domain experts [2], and hence, do not capture the com-
plexity of the problem-solving needs of scientists and engi-
neers in real-world settings.

We presented a web-based user study for measuring the
effectiveness of different color scales in climate modeling
tasks. In a counterbalanced design, climate scientists made
three different judgments of map pairs, each judgment cap-
turing a representative task in their real-world analysis
environment, using representative stimulus comparisons.
In the first task, observers judged the overall magnitude dif-
ference between pairs; in the second, they judged the spatial
similarity of each pair; and in the third, they clicked on the
region that was most dissimilar. In each task, three different
color scales were used to represent the data. The color scales
co-varied in luminance monotonicity and hue banding. The
BLU scale was monotonic in luminance and displayed no
color banding. The Rainbow color scale (RBW) was not
monotonic in luminance and displayed visible hue bands.
The KIN scale was monotonic in luminance and also con-
tained visible hue bands.

Our key findings are the following. i) Monotonic lumi-
nance had a positive effect, and hue banding seemed to
have a negative effect on magnitude comparison, ii) color
scales with hue banding enabled more accurate judgments
of differences in spatial distribution, iii) scientists’ high con-
fidence levels with the rainbow color scale, did not get
reflected in greater performance accuracy, and iv) despite
overwhelming familiarity with the rainbow, many scientists
expressed post-study preference for the relatively unfamil-
iar KIN color scale.

We expect that our results would generalize to the repre-
sentation of any scalar variable on across a geographical
map, at least at the spatial resolutions we studied. In our
experiments, we studied just three color scales, which sam-
pled two theoretically important ideas: luminance monoto-
nicity and banding (with a secondary focus on highlighting).
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In the future, based on the knowledge gained about the cli-
matological tasks, we will design more experiments to study
the effects of luminance dynamic range, the continuous ver-
sus segmented nature of color scales, and spatial frequency.
We will also continue to pursue the research questions about
similarities and differences between performance accuracy
and subjective impressions to see how visualization adop-
tion can be impacted by our findings.
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