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Fig. 1. Our proposed fact-evidence reasoning framework (FaEvR) augments the conventional visualization pipeline by explicitly
characterizing the scientific visual communication in terms of decoding facts and associated evidence.

Abstract—Despite the widespread use of communicative charts as a medium for scientific communication, we lack a systematic
understanding of how well the charts fulfill the goals of effective visual communication. Existing research mostly focuses on the means,
i.e. the encoding principles, and not the end, i.e. the key takeaway of a chart. To address this gap, we start from the first principles
and aim to answer the fundamental question: how can we describe the message of a scientific chart? We contribute a fact-evidence
reasoning framework (FaEvR) by augmenting the conventional visualization pipeline with the stages of gathering and associating
evidence for decoding the facts presented in a chart. We apply the resulting classification scheme of fact and evidence on a collection
of 500 charts collected from publications in multiple science domains. We demonstrate the practical applications of FaEvR in calibrating
task complexity and detecting barriers towards chart interpretability.

Index Terms—Visual communication, scientific communication, graphical reasoning, chart interpretation

1 INTRODUCTION

In his iconic TED talk about fourteen years back [31], Hans Rosling,
a Swedish scientist, had opened the door for realizing the hitherto un-
tapped potential of visualization in publicly communicating data-driven
facts [33]. Fast-forward to the modern era, when, in the times of a
raging global pandemic, charts have been highly consequential for
disseminating data-driven facts and evidence. Even beyond these two
watershed moments in the history of visual communication, charts have
been an integral part of scientific disciplines, via academic publications
or presentations. Despite this widespread use and impact of commu-
nicative charts in advancing public awareness and scientific discourse,
we lack a systematic way of bridging the gap between what is shown
and what to look for in a chart, what we term as a communication
gap, or the missing link, between the visual representation of data
and the mental model of a visualization consumer. This gap is more
profound when visualization designers and consumers have different
backgrounds or expertise levels (e.g., scientists communicating a mes-
sage to the public), but also exists when designers and consumers have
similar expertise levels (e.g., scientists communicating a message to
their peers via publications).

To bridge this gap, we aim to characterize the cognitive effort re-
quired for decoding communicative charts using a fact-evidence reason-
ing framework (FaEvR). FaEvR is motivated by the need to characterize
the starting point of a visualization decoding pipeline (Figure 1) in terms
of the outcomes of scientific data analysis processes. While terms like
messages or insights are used for this purpose, they often have unclear
definitions and are loosely connected to the downstream perceptual
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tasks and the high-level cognitive processing stages for consuming the
information presented in a chart. Our framework addresses this missing
link by serving the dual purpose of input and output-oriented reasoning,
when decoding and encoding, respectively, from the perspectives of
a visualization consumer and a designer. As shown in Figure 1, we
augment the conventional, encoding-focused visualization pipeline [13]
with the additional input stages of understanding facts and finding evi-
dence, which trigger the process of reading charts and ultimately, lead
to the outcome of gathering evidence and associating them back with
the facts. The bidirectional arrows in the extended pipeline capture the
reasoning processes while decoding and encoding charts. Decoding
effort can be calibrated in terms of a visual search process for gathering
evidence: a communicative chart could be deemed as most effective,
when the signals representing relevant evidence are maximized and the
noise corresponding to irrelevant evidence can be minimized, a goal
that is analogous to optimizing the signal-to-noise ratio in data-driven
predictions [35]. When we analyze visualization design using this
fact-evidence lens, we can ask questions that can guide us towards
calibrating the degree of interpretability of a chart, like: are the facts
represented true or false?, are the evidence presented necessary and
sufficient for associating them with intended facts?, and is the chart
expressive [27] enough with respect to the presented evidence?.

For instantiating FaEvR, we collected 500 charts from three science
domains, like, energy, climate science, and healthcare. We focus on two
main contributions in this paper: i) a theoretical cognitive processing
framework organized around the classification of facts and evidence
in static, communicative charts, and ii) demonstration of the practical
value of the framework in preemptively calibrating task complexity
and in analyzing barriers towards effective visual interpretation, by
applying the framework on our collected scientific charts.

2 RELATED FRAMEWORKS AND MODELS

In this section, we discuss the frameworks and models related to our
fact-evidence based visual communication pipeline.
Critical thinking and reasoning: We know both from real-world expe-



rience and from empirical evidence that critical thinking is an essential
component of scientific inquiry and education [7, 22]. Charts represent-
ing scientific findings should facilitate such inquiry by engaging visual
consumers in deliberative reasoning [26]. In terms of our pipeline, this
means reasoning about facts, and assimilation and introspection about
associated evidence. In the process of decoding facts and evidence,
one can also potentially be engaged in counterfactual thinking [28] and
mentally simulate what-if scenarios.
Task taxonomies: Existing visualization task taxonomies and classifi-
cation schemes [4, 10, 34] mostly address interactive, exploratory data
analysis scenarios. Here, the target is often unknown and the goal is to
traverse through the why, what, and how [10] pipeline of data and visual
mappings for deriving hypotheses and findings. On the other hand, the
starting point for decoding scientific charts are the findings, which we
characterize as facts and associated evidences. Our framework, there-
fore, naturally links to the existing task taxonomies by providing a way
for visualization consumers, often unfamiliar with the data and domain,
to translate their intent to visualization tasks and ultimately decode
meaning from the data. The fact-evidence characterization serves as
an abstraction layer [36], providing incentives to users to perform the
necessary perceptual tasks for gathering evidence and interpreting facts.
Analogous to the knowledge precepts proposed by Amar and Stasko
for data analysis scenario [5], we provide an abstraction bridge for
visual communication. It can be used for a more meaningful analysis of
the effects of visualization design on decoding communicative charts,
going beyond the exclusive focus on encoding principles [18].
Bridging Perception and Cognition: Visualization can be conceptu-
alized as a communication channel between the data space and the
mental space of the intended audience [17]. The encoding side of
visualization, based on principles of graphical perception, has been
well studied. Starting from the seminal work of Bertin [9], defining the
building blocks of data visualization, and the work of Cleveland and
McGill [14], providing principles grounded in psychophysics to make
informed decisions in visualization design, researchers have developed
a wealth of knowledge on how to effectively depict data [8,11,23,25,37]
from the perspective of human perception. Recently, studies and frame-
works have also been proposed for analyzing graphical interpretation
and cognition [20, 39], connecting visualization interpretation with
graphical inference. FaEvR complements these empirical approaches
by providing a systematization of the scientific visual communication
outcomes and processes. Our work is similar in spirit to the human
cognition framework proposed by Patterson et al. [30], however, in
comparison, FaEvR provides a more accessible and operational frame-
work to visualization non-experts like domain scientists and general
information consumers alike.

3 THE FACT-EVIDENCE REASONING FRAMEWORK (FAEVR)

FaEvR was developed with the intuition that the primary goal of sci-
entific charts, found in publications, presentations, and abundantly in
news stories in the COVID-19 era, is to inform people about facts.
These facts are results of scientific data analysis processes, which
naturally generate both facts and associated evidence. We adopt the
following definition of fact and evidence: the Cambridge dictionary [1]
defines fact as “something that is known to have happened or to exist,
especially something for which proof exists, or about which there is
information.” Evidence [1] is defined as “anything that helps to prove
that something is or is not true.” Our framework aims to formalize these
concepts in the context of visual communication. When presented with
a chart, text-based guidance, in the form of captions, axis labels, an-
notations, and chart titles, help users get an idea of the intent of the
designer, i.e., the intended fact. Facts need to be backed up by evidence
and users need to find evidence by reading a chart, leading to them
performing a set of visualization tasks, followed by gathering and
association of the evidence with the facts. This process of gathering
evidence and associating them back with the facts is a hybrid between
the classical exploratory data analysis and confirmatory data analysis
processes [2]. Here, the complexity of the reasoning tasks is dependent
on the nature of facts and evidence. To instantiate FaEvR, we selected
three scientific domains where visualization is an integral part of the

(a)

(b)Fig. 2. Descriptive evidence. Simulations of the Earth’s temperature
variations and comparing the results to the measured temperatures [38].
This is an example of descriptive visual evidence, where, With minimal
cognitive effort, a chart consumer can compare the two measures and
associate the evidence with the fact about global warming.

scientific communication process, especially to a non-expert audience,
like the public and policy-makers. For collecting charts, we consulted
with senior domain scientists in each of these domains, like climate sci-
ence, healthcare, and energy, who are experts working in national labs.
They pointed us to the main publications in their respective domains
which are used for knowledge dissemination purposes. From these
publications, we extracted the charts, along with their captions, and
ended with a sample of 500 charts. Next, we performed thematic and
qualitative analysis [32] for organizing the facts and evidence based on
our classification scheme, as described below.

3.1 Metadata-based Classification of Facts
We use the chart metadata for classifying the facts presented in com-
municative charts. A dimension contains discrete values such as year,
geographical locations which are used to categorize, segment, or group
data items. A measure represents a numerically quantifiable piece of in-
formation. Temperature, Sales, Profit, Retention Rate, are all examples
of specific measures. They represent observations about the data or the
calculated values like budget invested for renewable sources of energy,
average cost, profit revenue, GDP growth of a country per capita.

We categorize the measures according to their number and their
scales by extracting this information from a chart. In the case of
charts where there are more than one measure, we further drill down
according to the similarity of their scales. By scale here we mean
the range of values which suggests the relative size or the extent of a
quantitative attribute. In summary, we classify charts based on whether
they represent a single measure or multiple measures, and also if, for
multiple measures, they are on the same or different scales. Both
of these are important factors for triggering the downstream tasks,
especially when combining multiple measures for drawing an inference.

Multiple dimensions usually represent different facets of a data item.
We adopt the concept of faceted search [24], traditionally used for
describing interactive user interfaces, for a high-level classification of
facts, expressed in static charts, based on dimensions and measures.
We consider unifaceted facts as those which depict one dimension cor-
responding to given measures in a given visualization. Multifaceted
facts depict more than one dimension or more than one measure with
different scales in a visualization. For example, the line chart in Fig-
ure 3a, which depicts the rise in temperature involves one dimension
(the data from simulations) over a continuous scale of time. Hence
we classify this fact as a unifaceted one. For the stacked bar chart in
Figure 3b, multiple measures and their changes are shown across the
time dimension, percentage of yield measure, a continuous measure,
and the range of yield change, which is discretized into two directions
of change, and hence can be treated as another dimension. Since as-
sociating multiple dimensions is needed here, we classify this fact as
a multifaceted one. Faceted search for evidence gathering is a useful
concept for linking the presented facts with the difficulty level of the
reasoning and retrieval tasks, as we will see in the following sections.

3.2 Reasoning-based Classification of Evidence
We take inspiration from reasoning frameworks [15], models of graph
comprehension [12] and concepts of statistical data analysis [2] for



a.

b.
Fig. 3. Inferential evidence. Multiple estimates of people flooded in
coastal areas due to sea level rise (a) [29] and comparison of projected
changes in crop yields across multiple time periods due to climate change
(b) [3]. These are examples of inferential visual evidence, as decoding
these charts requires mental computation and deductive reasoning for
gathering the evidence and associating them with the presented facts.

classifying the different forms of evidence into two broad classes: de-
scriptive evidence, where minimal cognitive effort needs to be spent for
decoding a chart and caters to the system 1 type of quick thinking [26]
and inferential evidence, where one needs to engage in the process
of deliberative reasoning and it caters to the system 2 type of slow
thinking [26] for piecing together the evidence. It should be noted
that these are not mutually exclusive categories of evidence types as in
many cases, both types of evidence can be present in a chart. Descrip-
tive evidence can be considered as the minimal amount of evidence
that substantiates a fact, whereas, inferential evidence necessitates an
added degree of reasoning for processing the information. To simplify
our classification, we avoid creating a hybrid class of evidence and
wherever inferential evidence is present, we classify it as such, with the
assumption that additional descriptive evidence maybe also present for
substantiating the presented fact.
Descriptive Evidence: The concept of descriptive evidence is analo-
gous to that of descriptive statistics for summarizing properties of data.
Similarly, when an evidence is shown directly without an additional
level of inference required, we classify it as descriptive evidence. An
analogy can also be drawn here with WYSIWYG editors where one
directly observes what one writes. In the case of charts, the visual
evidence directly describes the facts and does not demand a thoughtful
cognitive processing on the user’s end to establish the fact. Deriving
descriptive evidence is related to recognizing characteristics and rela-
tionships which can be identified quickly either through visual means
or using text-based guidance. As shown in Figure 2, the chart aims
to convey the surge in temperature over Northern Hemisphere for the
past 1000 years. Chart consumers can readily notice the upward trend
and can associate this with the fact that global temperature has been
escalating foran decades.
Inferential Evidence: The concept of inferential evidence is similar
to that of inferential statistics where one must draw inference based on
the metrics (e.g. the degree of uncertainty) presented about the data.
Similarly, in a chart, inferential evidence requires the chart consumer
to piece together multiple aspects of the information, drawing from the
visual encoding of dimensions and measures and using that information
to update their mental model about the presented facts [12]. Inferential
evidence demands introspective and critical thinking as the user tries
to understand: how to derive the evidence, how to link them together,
and how they can be associated with the fact that the chart intends
to communicate. This requires continuously alternating between the
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Fig. 4. Applying the classification of facts and evidence. A large pro-
portion of the scientific charts we collected exhibited inferential evidence,
for which the complexity of reasoning tasks is high.

perceptual properties of the visualization and the underlying seman-
tics [6] of the evidence. Deriving inferential evidence to support the
fact requires a greater amount of cognitive effort on the user’s end,
because of two reasons. First, the nature of the dimensions could be
such that there is an inherent hierarchy, implying that part-to-whole
relationships need to be derived either through visual cues or through
mental operations. As shown in Figure 3a, the fact represented is about
the correlation between people flooded annually and sea-level rise,
across different model types (A1, B1, A2, B2). The model types are
hierarchical, based on the different protection types. In the line chart,
while this is a unifaceted chart with apparently less complexity, one
has to spend some time and effort to understand how much variance
there is across the protection sub-categories and how that variance can
be associated back with the fact. Second, one might need to associate
multiple measures at once, which have different scales and semantics,
for drawing conclusions. As shown in Figure 3b, the fact is about
projected changes in crop yield over given years. Here, the two direc-
tions of change need to be associated with the magnitude percentage
of yield projections by estimating the relative heights of the different
stacks. Combining these two pieces of information, by connecting the
end-points of the bar charts and by observing the diverging colors, is
needed to verify the trajectory of the temporal changes across multiple
years and measures. An increasing number of facets can lead to greater
task complexity while deriving inferential evidence, while the presence
of prior knowledge about the fact can mitigate some of those costs
associated with the decoding process.

4 APPLICATIONS OF FAEVR
We developed FaEvR with the vision that the classification of scientific
findings in terms of facts and evidence will help both chart consumers
and chart producers, like domain scientists. The latter can leverage
this framework for better design decisions by staying close to their
mental model and not spend their time and effort applying encoding-
based design principles. This addresses two recurring issues. First,
the principles of visual encoding might not fully capture the goals and
nuances of what communicative charts need to optimize for. Second,
scientists themselves might be skeptical of adopting new techniques
or principles owing to the familiarity barrier [16]. FaEvR addresses
these by creating an abstraction, using which domain scientists will be
able to better anticipate the consequences of their design choices by
preemptive task-level assessment of the decoding effort and an evalua-
tion of interpretability barriers in the design outcomes. In this section,
we demonstrate how FaEvR can be operationalized by applying the
classification scheme on our collection of 500 charts (faevr.njitvis.com)
across energy, climate, and healthcare domains.

4.1 Task-level assessment of decoding effort
FaEvR is an extension of the conventional data visualization
pipeline (Figure 1) and it naturally connects the cognitive reasoning
tasks with the lower-level perceptual tasks. Here, we demonstrate that
FaEvR helps calibrate the complexity of cognitive and perceptual tasks
by using the fact and evidence classifications. To facilitate this anal-
ysis, we group the charts based on four quadrants, derived from the
fact and evidence types (Figure 4). The figure summarizes two trends
we extracted by applying the framework on our collection: i) moving



Presence of visual cues

Fact: Multifaceted   Evidence: Inferential

a.

Fact: Unifaceted   
Evidence: Descriptive

c.
Absence of visual cues

b.

Fig. 5. Illustrating barriers to chart interpretability in simple bar charts. (a) Variation in expected range of annual global CO2 savings from
renewable energy for multiple scenarios and years [21]. The presence of visual cues, like indicators of mean values or missing values help in
reducing the cognitive load for inferential reasoning. In (b), though there are no obvious encoding problems, it requires gathering of evidence across
multiple facets, namely the welfare scenarios and the strategies [21], and across measures like temperature rise, health effects, and increased
welfare. The absence of appropriate visual cues increases cognitive load for the multiway comparison needed for decoding the chart. In (c), showing
global average GDP reduction for alternative stabilization targets and multiple reference scenarios [29], a chart consumer has to mentally organize
the presence or absence of data points and the absence of cues can make it difficult to interpret the fact correctly.

from unifaceted to multifaceted along the Y-axis of fact types, the
complexity of information retrieval tasks increases and ii) moving
from along the X-axis of evidence types from descriptive to inferential,
the complexity of reasoning tasks increases. The greater complexity
of retrieval tasks is correlated with the larger number of dimensions
and measures encoded in multifaceted visualization, implying greater
the need for greater decoding time and effort. The greater complexity
of reasoning tasks is correlated with the need to spend more time on
drawing inferences for extracting semantics from the encodings and
make mental calculations and reasoning to assimilate the information.
Figure 4 also shows that most charts across the three domains belonged
to the inferential evidence category, implying a high degree of aver-
age task complexity for the charts we collected. This categorization
also helps us to distinguish among the sequence of perceptual tasks
triggered by the types of facts and evidence. For the 37.97% charts
in the multifaceted - inferential quadrant (exemplified by Figure 3b),
user will generally perform the following sequence of tasks. They will
start with the organization of the data values by comparing the different
dimensions with each of the given measures and browse through the
values for making necessary derivations. Here, the time involved to
understand data distribution is correlated with the number of dimen-
sions. A high amount of cognitive effort is spent in finding inferential
evidence, by comparing the relationships among multiple facets and
then reading the chart by using the inferences from the previous step.
This helps in generating an explanation about the semantics of these
deductions and ultimately, gather evidence by associating the patterns
found in the derived evidence with the presented fact, thus completing
the loop. In contrast, for the 11.83% charts in the left most unifaceted -
descriptive quadrant (exemplified by Figure 3a), since only one dimen-
sion is involved, the user mainly aims to identify relevant dimensions
and patterns related to measures to find the descriptive evidence. This
requires less cognitive effort, as compared to the multifaceted - infer-
ential quadrant, and the effort is spent in mainly summarizing and
retrieving the facets to read the chart because mapping is to be done
only within the one dimension.

4.2 Understanding barriers to chart interpretability
The quadrant-based classification of charts based on FaEvR helps dis-
cover several chart interpretability barriers, going beyond the conven-
tional criteria of effectiveness and expressiveness [27] and the usual
decoding suspects, like clutter, over-plotting, etc. The challenges of
task complexity, encountered during the mental computation that one
needs to perform for inferring the evidence and associating the evidence
with the fact, can be mitigated by use of visual cues. Mental computa-
tions here involve performing aggregation operations and performing
multi-way comparisons [19] across different dimensions and measures.
Figure 5a illustrates an example from our collection where visual cues

can provide a reference for facilitating efficient visual comparisons
across multiple facets and associated evidence. However in Figure 5b,
there is no visual cue available to assist users with finding the associated
fact and a chart consumer has to make more inefficient comparisons
across the facets of welfare scenarios and strategies and across multiple
measures with different scales, for deducing the information. From
our chart collection, it was found that around 3% charts in unifaceted -
inferential and 13% charts in mutlifaceted - inferential guided user’s
attention towards the relevant details using visual cues. The second
factor influencing the interpretation of visualizations is contextual ex-
planation. When people try to comprehend a visualization, they are
encountered with the task of forming reasonable inferences from the
visuals. In these cases, the presence of textual information draws user’s
attention towards what needs to be seen and they don’t have to put
extra efforts to understand the graphic as shown in Figure 5a. From
the charts we analyzed, there were around 9% Multifaceted - Descrip-
tive, 8% Multifaceted - Inferential 7% Unifaceted - Descriptive and
2% Unifaceted - Inferential where having an explanatory text reduces
user’s efforts to decode the given visualization by providing them with
additional context to grasp the information shown. Both the visual fea-
tures and the cognitive efforts impact the user’s ability to get a sense of
the message being conveyed. The third barrier to chart interpretability
we identified is missing information potentially leading to incorrect
or incomplete derivation of fact as shown in Figure 5c. When the
visualization does not contain information about all the dimensions
and measures represented, it obstructs the user from forming a com-
plete understanding of the fact. From the charts we examined, 3%
in Multifaceted - Descriptive and 5% from Multifaceted - Inferential
were found to contain insufficient information. This impedes the user
from forming a complete sense of the message being conveyed and
establishing a link between the fact and its corresponding evidence.

5 CONCLUSION

Fact and evidence-based understanding of information are imperative
in a world that is getting inundated with misinformation every day,
especially via social media. Visual communication of data-driven facts,
demonstrated by the widespread use of charts for creating public aware-
ness about COVID-19, will become an increasingly important tool for
ensuring high-quality information dissemination and consumption. By
grounding visual communication in a fact-evidence framework, we
have laid the foundation for a deeper understanding of how commu-
nicative visualization can be optimized for inference-based reasoning.
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