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ABSTRACT

Evaluating a climate model’s fidelity (ability to simulate observed climate) is a critical step in establishing confidence in
the model’s suitability for future climate projections, and in tuning climate model parameters. Model developers use their
judgement in determining which trade-offs between different aspects of model fidelity are acceptable. However, little is
known about the degree of consensus in these evaluations, and whether experts use the same criteria when different scientific
objectives are defined. Here, we report on results from a broad community survey studying expert assessments of the relative
importance of different output variables when evaluating a global atmospheric model’s mean climate. We find that experts
adjust their ratings of variable importance in response to the scientific objective, for instance, scientists rate surface wind
stress as significantly more important for Southern Ocean climate than for the water cycle in the Asian watershed. There
is greater consensus on the importance of certain variables (e.g., shortwave cloud forcing) than others (e.g., aerosol optical
depth). We find few differences in expert consensus between respondents with greater or less climate modeling experience,
and no statistically significant differences between the responses of climate model developers and users. The concise variable
lists and community ratings reported here provide baseline descriptive data on current expert understanding of certain aspects
of model evaluation, and can serve as a starting point for further investigation, as well as developing more sophisticated
evaluation and scoring criteria with respect to specific scientific objectives.
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1. Introduction

A critical aspect of any climate modeling research is an
evaluation of the realism, or fidelity, of the model’s sim-
ulated climate through a careful comparison with observa-
tional data. For the purposes of this discussion, we define a
climate model’s “fidelity” broadly as the agreement of the
simulated climate with the observed historical and present-
day climate state, typically using a combination of satel-
lite and ground-based observations, field campaign measure-
ments, and reanalysis data products as primary sources of
observational data. At climate modeling centers around the
world, the development of a new model version is always
followed by a calibration (“tuning”) effort aimed at select-
ing values for model parameters that are physically justifi-
able and lead to a credible simulation of climate (Hourdin et
al., 2017). Model tuning involves the completion of a large
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number of simulations with variations in parameters, input
files, and other features of the model. Each simulation is
painstakingly evaluated, typically by examining a set of pri-
ority metrics, accompanied by manual inspection of a variety
of plots and visualizations of various modeled fields, and de-
tailed comparisons to determine which model configuration
produces a credible realization of the climate. Tuning one
coupled climate model requires thousands of hours of effort
by skilled experts. Experts must exercise judgment, based
on years of training, experience, and broad and deep under-
standing of the model, the physical climate system, and ob-
servational constraints, in determining which trade-offs are
defensible when different optimization goals conflict.

Comparisons of model fidelity across multiple model
simulations are also carried out in multi-model intercompar-
ison projects (e.g., Gleckler et al., 2008; Reichler and Kim,
2008), and in perturbed parameter ensemble experiments for
the purpose of quantifying model uncertainty or sensitivities
(Yang et al., 2013; Qian et al., 2015, 2016). Such studies aim
to understand what factors lead to inter-model diversity and
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drive model sensitivities and to identify potential improve-
ments. Additionally, if an adequate single metric of overall
climate model fidelity could be developed, it could be applied
to construct weighted averages of climate simulation ensem-
bles (Min and Hense, 2006; Suckling and Smith, 2013), and
used in automatic parameter optimization algorithms (Zhang
et al., 2015).

Early efforts to characterize multi-variable climate model
fidelity calculated an index of climate model fidelity by calcu-
lating a normalized root-mean-square error or similar metric
for each of a selected set of model variables, and then av-
eraging these metrics for all variables (Gleckler et al., 2008;
Reichler and Kim, 2008). More nuanced objective methods
have been proposed to account for the inherent variability in
each field (Braverman et al., 2011), and for spatial and tempo-
ral dependencies between variables (Nosedal-Sanchez et al.,
2016).

These objective methods characterize how closely mod-
els resemble observations of specific variables with an in-
creasing degree of sophistication. Nevertheless, in all such
approaches, expert judgement is exercised in the selection
of which variables to include. In addition, in most previous
studies, an implicit decision was made to treat all variables
as being of equal physical importance. By contrast, when ex-
perts evaluate model fidelity, their decision-making implic-
itly incorporates their understanding of the physical impor-
tance of specific variables to the science questions they are
interested in, and more emphasis is placed on the most physi-
cally relevant variables. Recent studies have emphasized that
the selection of assessed variables should reflect physical un-
derstanding of the system under consideration (Knutti et al.,
2017) and that different research teams may select different
optimization criteria when weighting model ensemble mem-
bers, depending on their goals (Herger et al., 2017).

A potential path forward is to construct a fidelity index I
that combines multiple metrics mi that characterize different
aspects of model fidelity, weighted by their relative impor-
tance wi:

I = Σiwimi , (1)

However, since the relative “importance” of different opti-
mization goals is inherently subjective, any such index, in-
cluding one in which all wi are equal, will be susceptible to
criticism that the weights chosen are arbitrary.

Since expert judgement cannot be fully eliminated from
the model evaluation process, we propose that it would be
valuable to better understand and quantify the relative impor-
tance climate modelers assign to different aspects of model
fidelity when making decisions about trade-offs. In addition,
we believe it is important to quantify the degree to which con-
sensus exists about the importance of such variables. In the
longer term, we envision that this information can be used
to develop metrics that quantify both the mean and the vari-
ability of the community’s judgements about climate model
fidelity.

This paper reports on our first step towards this long-term
goal: the establishment of a baseline understanding of the

level of importance that experts explicitly state they assign
to different variables when evaluating the mean climate state
of the atmosphere of a climate model. To this end, we con-
ducted a large international survey of climate model devel-
opers and users, and asked them to indicate their view of the
relative importance of a subset of variables used in assess-
ing model fidelity, in the context of particular scientific goals.
The specific aims of this study are to: (1) quantify the extent
of consensus among climate modelers on the relative impor-
tance of different variables in evaluating climate models; (2)
document whether modelers adjust their importance weights
depending on the scientific purpose for which a model is be-
ing evaluated; (3) determine whether either importance rank-
ings or degree of consensus vary as a function of an indi-
vidual’s experience or domain of expertise; and (4) provide
baseline information for a planned follow-up study, a mock
model evaluation exercise. In the follow-up study, described
in more detail in section 4, we will investigate whether ex-
perts’ assessments of models, on the basis of plots and met-
rics describing model–observation comparisons, are consis-
tent with the relative importance that these experts previously
assigned to individual variables for the assessment of model
fidelity, with respect to specific science goals.

We describe the present study in the following sections.
Section 2 describes the design of the survey, recruitment
of participants, and methods used in analyzing survey re-
sponses. Section 3 describes the results of the survey, in-
cluding the distribution of importance rankings, degree of
consensus, dependence of responses on the specific science
questions and respondents’ level of experience, and perceived
barriers to systematic quantification of climate model fidelity.
Section 4 discusses a potential approach to synthesizing ex-
pert assessments of model fidelity and objective methods for
fidelity assessment, by systematically measuring and explic-
itly accounting for the relative importance experts assign to
different aspects of fidelity. Finally, section 5 summarizes the
key points and conclusions from this study.

2. Survey design and methods

2.1. Survey aims, design and scope

We conducted a large international survey to document
and understand the expert judgments of the climate model-
ing community on the relative importance of different model
variables in the evaluation of simulation fidelity.

To keep the scope of this study focused, we only con-
sidered the evaluation of the annual mean climatology of an
atmosphere-only model simulation, with prescribed SST. In
addition, participants were asked to assume that their evalua-
tion would be carried out only on the basis of scalar metrics
(e.g., RMSE, correlation) characterizing the agreement of the
respective model field with observations.

Transient features of climate were intentionally excluded
from this study, but are of critical importance in model evalu-
ation, and should be explored in future work. Similarly, cou-
pled climate models have more complex tuning criteria that
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are not considered here.
We chose to limit the number of variables and criteria un-

der consideration in order to encourage broader participation,
and in anticipation of a planned follow-up study (described in
more detail in section 4). Briefly, the follow-up study will in-
vite experts to compare and evaluate climate model outputs,
and will aim to infer the importance that experts implicitly as-
sign to different aspects of model fidelity in conducting this
assessment. To the best of our knowledge, this would be the
first attempt to experimentally characterize expert evaluations
of climate model fidelity, and so we aim to initially test the
approach using a small number of key variables, which will
allow for a more controlled study. The relative importance
ratings and other input from experts reported in this study
will both inform the design of the follow-up study and pro-
vide a priori values for Bayesian inference of the weights wi.

The importance of a particular variable in model evalu-
ation will depend on the purpose for which the model will
be used. To better constrain the responses, as well as to ex-
plore how expert rankings of different model variables might
change depending on the scientific objectives, we asked par-
ticipants to rate the importance of different variables with re-
spect to several different “Science Drivers”. A list of the six
Science Drivers used in this survey is shown in Table 1. For
each Science Driver, participants were presented with a pre-
selected list of variables thought to be relevant to that topic,
and asked to rate the importance of each variable on a seven-
point Likert scale from “Not at all Important” to “Extremely
Important”. Participants were also invited to provide writ-
ten feedback identifying any “very important” or “extremely
important” variables that they felt had been overlooked; many
took the opportunity to provide these comments, summarized
in Tables S1–S3 (see Electronic Supplementary Material).
This feedback will be used to improve the survey design in
the follow-up study.

2.2. Survey recruitment, participation, and data screening
The survey was distributed via several professional mail-

ing lists targeting communities of climate scientists, espe-
cially model developers and users, and by directly soliciting
input from colleagues through the professional networks of
the authors of this paper. Due to privacy restrictions, we
are unable to report the identities or geographic locations of

Table 1. Science Driver (SD) questions posed in this survey.

SD 1 How well does the model reproduce the overall features of
the Earth’s climate?

SD 2 How well does the model reproduce features of the global
water cycle?

SD 3 How well does the model simulate Southern Ocean cli-
mate?

SD 4 How well does the model simulate important features of
the water cycle in the Amazon watershed?

SD 5 How well does the model simulate important features of
the water cycle in the Asian watershed?

SD 6 How well does the model simulate the climate impact of
clouds globally?

survey respondents, but we are confident that they are rep-
resentative of the climate modeling community. The survey
was open from 18 January 2017 to 25 April 2017. Partic-
ipants who had not completed at least all items on the first
Science Driver (N = 12), and participants who rated them-
selves as “not at all experienced” with evaluating model fi-
delity (N = 7) were excluded from analysis. Of the remaining
96 participants, 81 had completed all six Science Drivers.

Our survey respondents were a highly experienced group,
with the vast majority of participants rating themselves as ei-
ther “very familiar” (40.6%) or “extremely familiar” (40.6%)
with climate modeling. In addition, a large fraction of our
participants had worked in climate modeling for many years,
with the majority of participants (62) reporting at least 10
years’ experience, and a substantial number of participants
(31) reporting at least 20 years’ experience with climate mod-
eling. When asked to rate their experience in “evaluating
the fidelity of the atmospheric component of global climate
model simulations,” 37.5% rated themselves as “very expe-
rienced,” and 20.8% as “moderately experienced” in “tun-
ing/calibrating the atmospheric component of global climate
model simulations”. An overview of the characteristics of the
survey participants is shown in Fig. 1.

2.3. Formal consensus measure: Coefficient of Agree-
ment (A)

To quantify the degree of consensus among our partic-
ipants, we employ a formal measure of consensus called
the coefficient of agreement A (Riffenburgh and Johnstone,
2009), which varies from values near 0 (no agreement; ran-
dom responses) to a maximum possible value of 1 (complete
consensus). Calculated values of A for the two experience
groups, and their probability p of being significantly differ-
ent from each other, are tabulated for all Science Drivers and
variables in the Supplementary Tables S4–S6.

The coefficient of agreement is calculated from the ob-
served disagreement dobs and the expected disagreement un-
der the null hypothesis of random responses dexp. Let rmax
denote the number of possible options (7 in the Likert scale
used here); let r = 1 . . .rmax denote the possible responses
(r = 7 is “Extremely important”, r = 6 is “Very important”,
and so on); let nr denote the number of respondents choos-
ing the rth option, and let rmed denote the median value of
r from all respondents. The observed disagreement is then
calculated as

dobs =

rmax∑
r=1

nr |rmed− r| , (2)

where |rmed− r| is the weight for the rth choice. The expected
disagreement is calculated as

dexp =
n
k

rmax∑
r=1

∣∣∣∣∣k+1
2
− r
∣∣∣∣∣ . (3)

The coefficient of agreement A is then calculated as the com-
plement of the ratio of observed to expected disagreement:

A = 1− dobs

dexp
.
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Fig. 1. Characteristics of survey participants.

For randomly distributed responses, dobs would be close to
dexp, and A would be close to zero; while for perfect agree-
ment, dobs = 0 and A = 1.

Because the value of A is sensitive to the total number
of respondents N, the value of A is not comparable for sub-
groups of participants with different sizes. We performed
additional significance testing to determine whether the de-
gree of consensus was the same, or different, between our
“high experience” and “low experience” groups, and/or be-
tween two survey drivers.

We test for statistically significant differences between
two values of the coefficient of agreement for two groups of
responses, A1 and A2, by performing a randomization test
with the null hypothesis H0: A1 = A2. To perform this test,
we take l = 1 : 100 random draws, without replacement, from
the two groups of survey responses. For each lth draw, we
calculate the difference in the coefficient of agreement for the
two groups, dl = |A1l − A2l|. We then calculate the p-value
for rejection of the null hypothesis, i.e., the probability that a
difference in agreement larger than the observed mean could
occur by chance:

p =
1

100

100∑
l=1

{
1, dl > dl,mean
0, dl � dl,mean

, (4)

where dl,mean is the mean of all dl.

3. Survey results and discussion

Here we report on selected analyses and results from
the survey. We focus primarily on: (1) the degree of con-
sensus among experts on the importance of different model

variables; (2) how responsive experts’ assessments of vari-
able importance are to the defined scientific objectives; and
(3) differences in expert ratings of variable importance be-
tween respondents with more climate modeling experience
and those with less experience.

We also performed similar analyses comparing survey re-
sponses from model users and model developers. The re-
sponses of these two groups were statistically nearly iden-
tical, and so we do not report them in further detail.

3.1. Importance of different variables to climate model fi-
delity assessments across six Science Drivers

In this section, we discuss expert ratings of variable im-
portance for the six science drivers. In order to understand
whether participants’ responses differed depending on their
degree of expertise, we first divided the participants into two
experience groups: those who rated themselves as “very ex-
perienced” in evaluating model fidelity were placed into the
“high experience” group (N = 36); all other participants were
placed into the “low experience” group (N = 60).

We emphasize that our “low experience” group consists
largely of working climate scientists over the age of 30
(95%), with a median of 10 years of experience in climate
modeling. In other words, our “low experience” group mostly
consists not of laypersons, students or trainees, but of early-
to-mid-career climate scientists with moderate levels of ex-
perience in evaluating and tuning climate models. Our “high
experience” group consists largely of mid-to-late career sci-
entists: the majority are over the age of 50 (53%), with a
median of 20.5 years of experience in climate modeling. Re-
searchers on the development of expertise have argued that
roughly 10 years of experience are needed for the develop-
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ment and maturation of expertise (Ericsson, 1996); 86% of
our “high experience” group members have 10 years or more
of climate modeling experience.

3.1.1. Science Driver 1: How well does the model repro-
duce the overall features of the Earth’s climate?

Our first Science Driver asked respondents to assess the
importance of different variables to “the overall features of
Earth’s climate”. We believe that this statement summarizes
the primary aim of most experts when calibrating a climate
model. However, experts’ typical practices are likely to be
influenced by factors such as the tools and practices used
by their mentors and immediate colleagues, their disciplinary
background, and their research interests. Such factors could
contribute to differences in judgments of what constitutes a
“good” model simulation. The aim of this Science Driver is to
understand what experts prioritize when the goal is relatively
imprecisely defined as optimizing the “overall features” of
climate; these responses can then be contrasted with the more

specific questions in the following five Science Drivers.
Figures 2 and 3 show the distribution of responses for

each variable in Science Driver 1 for the high and low expe-
rience groups. Figure 4 (top) summarizes the mean and stan-
dard deviation of importance ratings for all variables in Sci-
ence Driver 1. Overall, the variables most likely to be iden-
tified as “extremely important” were (in ranked order): rain
flux (N = 31), 2-m air temperature (N = 28), longwave cloud
forcing (N = 22), shortwave cloud forcing (N = 21), and sea
level pressure (N = 20). The complete distributions of re-
sponses for all science drivers by experience group, together
with statistical summary variables and significance tests, are
shown in Tables S1–13.

The distribution and degree of consensus is similar be-
tween the two groups, with no statistically significant dif-
ferences for any variable (see Supplementary Tables S4–S6).
This suggests that once an initial level of experience is ac-
quired, additional experience may not lead to significant dif-
ferences in judgments about model fidelity.

Fig. 2. Science Driver 1: distributions of importance ratings, ranked by consensus, as quantified by the coeffi-
cient of agreement A, for variables with high expert consensus about their importance.
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Fig. 3. As in Fig. 2 but for variables with low expert consensus about their importance.

It is instructive to examine which variables are the excep-
tions to this general rule; these exceptions hint at insights into
where and how greater experience matters most in inform-
ing the judgments experts make about model fidelity. The
distribution of responses of the high experience and low ex-
perience group differed for only one item in Science Driver
1—the oceanic surface wind stress (p < 0.01); for this vari-
able, the median response of the high and low experience
groups was “very important” and “moderately important,” re-
spectively. We speculate that the high-experience group may
be more sensitive to this variable due to (1) its critical impor-
tance to ocean–atmosphere coupling, and (2) awareness of
the relatively high-quality observational constraints available
from wind scatterometer data.

We also investigated the degree of consensus on the im-
portance of different variables. We observe a clearly higher
degree of consensus for some variables, compared to others.
Across all participants (high and low experience groups to-
gether), there is a comparatively high degree of consensus on

the importance of shortwave cloud forcing (A = 0.67), long-
wave cloud forcing (A = 0.62), and rain flux (A = 0.62). In
particular, there is comparatively little agreement on the im-
portance of oceanic surface wind stress (A = 0.39), due to the
discrepancy between experience groups on this item, and on
the aerosol optical depth (AOD; A = 0.42). The data we col-
lected do not allow us to be certain of the reasoning behind
importance ratings, but the lack of consensus on AOD impor-
tance is perhaps unsurprising in light of the high uncertainty
associated with the magnitude of aerosol impacts on climate
(Stocker et al., 2013), and recent controversies among cli-
mate modelers on the importance of aerosols to climate, or
lack thereof (Booth et al., 2012; Stevens, 2013; Seinfeld et
al., 2016).

3.1.2. Science Driver 2: How well does the model repro-
duce features of the global water cycle?

Our second Science Driver included a comparatively lim-
ited number of variables related to the global water cycle
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Fig. 4. Science Drivers 1–3: mean responses, high and low experience groups, ranked by overall mean response
from all participants; color of dots indicates standard deviation of responses.

(Fig. 4: middle). These should be considered in combina-
tion with Science Driver 6, which addresses the assessment
of simulated clouds using a satellite simulator (Fig. 5).

While the differences did not pass our criteria for statis-
tical significance, we note a slight tendency for the high ex-
perience group to assign higher mean importance ratings to
net TOA radiative fluxes and precipitable water amount. We
speculate that this might be due to a slightly greater aware-
ness of, and sensitivity to, observational uncertainties among
the high experience group, expressed as a higher importance
rating for variables with stronger observational constraints
from satellite measurements. This interpretation is supported

by the comment of one study participant (with 20 years’ expe-
rience in climate modeling), who observed that “surface LH
[latent heating] and SH [sensible heating] are not well con-
strained from obs[ervations]. While important, that means
they aren’t much use for tuning.”

3.1.3. Science Driver 3: How well does the model simulate
Southern Ocean climate?

For Southern Ocean climate, surface interactions that af-
fect ocean–atmosphere coupling, including wind stress, latent
heat flux (evaporation) and rain flux, together with shortwave
cloud forcing, were identified as among the most important
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Fig. 5. Science Drivers 4–5: mean responses, high and low experience groups, ranked by overall mean response
from all participants; color of dots indicates standard deviation of responses.

variables by our participants (Fig. 4: bottom).
The high experience group rated rain fluxes as more im-

portant (median: “very” important) compared to the low ex-
perience group (median: “moderately” important; probability
of difference: p = 0.02).

It is interesting to compare the responses with Science
Driver 1, which included many of the same variables. For in-
stance, for AOD, the low experience group assigned a lower
mean importance for overall climate (mean: 4.32; σ: 1.41)
than for Southern Ocean climate (mean: 4.04; σ: 1.49); the
high experience group assigned a higher mean importance
for overall climate (mean: 4.64; σ: 1.16) than for Southern
Ocean climate (mean: 4.34; σ: 1.13).

The reasons for this discrepancy are unclear. One possi-
bility is that the high experience group may be more aware
that over the Southern Ocean, AOD provides a poor con-
straint on cloud condensation nuclei (Stier, 2016), and is af-
fected by substantial observational uncertainties, with esti-
mates varying widely between different satellite products.

3.1.4. Science Driver 4: How well does the model simulate
important features of the water cycle in the Amazon
watershed?

On Science Driver 4, which addresses the water cycle in
the Amazon watershed (Fig. 5: top), participants identified
surface sensible and latent heat flux, specific humidity, and

rain flux as the most important variables for evaluation. It is
possible that the more experienced group is more sensitive to
the critical role of land–atmosphere coupling in the Amazo-
nian water cycle. This interpretation would be consistent with
the additional variables suggested by our survey participants
for this science driver, which also focused on variables criti-
cal to land–atmosphere coupling, e.g. “soil moisture”, “wa-
ter recycling ratio”, and “plant transpiration” (Supplementary
Table S2). While the variables selected for the survey focused
largely on mean thermodynamic variables, commenters also
mentioned critical features of local dynamics in the Amazon
region, such as surface topography and “wind flow over the
Andes”, “convection”, and vertical velocity at 850 hPa.

3.1.5. Science Driver 5: How well does the model simulate
important features of the water cycle in the Asian wa-
tershed?

For Science Driver 5, focused on the Asian watershed,
participants rated rain flux, surface latent heat flux, and net
shortwave radiative flux at the surface as the most important
variables (Fig. 5: bottom). For variables included in both
Science Drivers, the order of variable importance was the
same as in the Amazon watershed, but different than in the
Southern Ocean; some of these differences will be discussed
in section 3.3. Written responses again mentioned soil mois-
ture (3×) and moisture advection (2×) as important variables
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missing from the list.

3.1.6. Science Driver 6: How well does the model simulate
the climate impact of clouds globally?

The final Science Driver addressed the evaluation of
cloud properties in the model (Fig. 6) using a satellite simu-
lator, which produces simulated satellite observations and re-
trievals based on radiative transfer calculations in the model.
“Very important” (6) was the most common response for all
variables in Science Driver 6 (Supplementary Table S15).

While differences in responses between the two expe-
rience groups did not pass our bar for statistical signifi-
cance, the high experience group selected “extremely impor-
tant” more frequently than the low experience group for the
“high level cloud cover” and “low cloud cover” items, which
also had the highest mean importance ratings in this Science
Driver.

Five participants indicated that longwave cloud forcing
and shortwave cloud forcing should have been included, and
one respondent noted “A complete vertical distribution of
cloud properties would be even more interesting than “low”,
“medium” and “high” cloud cover. Cloud particle size and
number would also be interesting.” Another responded that
“cloud fraction is a model convenience but is quite arbitrary.”

3.2. Impact of experience on judgments of variable impor-
tance

We hypothesized that: (H1) respondents with less expe-
rience in climate modeling would differ from more experi-
enced respondents in their judgments of relative variable im-
portance; and (H2) Respondents with greater experience in

climate modeling would exhibit greater consensus in their
judgments of the importance of different variables.

(H1): Using a Chi-squared significance test (details in the
Supplementary Material), we find support for differences in
assessment of variable importance by high and low experi-
ence groups, but only for certain selected variables. Com-
pared to the low experience group, the high experience group
rated ocean surface wind stress as more important to evalua-
tion of global climate (Science Driver 1) and rain flux as more
important to evaluation of Southern Ocean climate (Science
Driver 3).

Some other differences are observable between the two
groups (see Supplementary Tables S10–S15), but did not
meet our criteria for significance; it is possible that additional
differences would emerge if a larger survey population could
be attained.

(H2): We find no statistically significant differences in
degree of consensus between the high and low experience
groups.

The lack of large differences in responses between the
high and low experience groups suggests that variations in
importance ratings are mainly driven by factors that are unre-
lated to the amount of experience the scientists have. Exam-
ples could include the specific subdiscipline of the individual
expert, or the practices and research foci that are common in
their particular research community or geographic area. This
result also suggests that expertise in climate model evaluation
may reach a plateau after a certain level of proficiency is at-
tained, with additional experience leading to only incremen-
tal changes in expert evaluations and judgments. One possi-
ble reason for this is that the process of model evaluation is

Fig. 6. Science Driver 6: mean responses, high and low experience groups, ranked by overall mean response from all
participants; color of dots indicates standard deviation of responses.
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constantly evolving as updated model versions incorporate
additional processes and improvements, new observational
datasets become available, and new tools are developed to
support the evaluation process. As a result, climate scientists
continually need to update their understanding about climate
models and their evaluation to reflect the current state-of-the-
art. Another possible explanation is that the culture of the
climate modeling community may promote an efficient trans-
fer of knowledge, as more experienced scientists offer train-
ing and advice to less experienced colleagues and to other
research groups, shortening the learning curve of new scien-
tists entering the field.

3.3. Impact of Science Drivers on judgments of variable
importance

We expected that survey participants would rate the im-
portance of the same model variables differently depending
on the science goals, and indeed this is what we found. In
this section, we focus on the ratings from the high experience
group, but results from the low experience group are similar.

For instance, rain flux was rated as less important to eval-
uation of the Southern Ocean (mean: 6.00; σ: 1.12) than to
global climate (mean: 6.14; σ: 0.92) or the Asian watershed
(mean: 6.32; σ: 1.00), while shortwave and longwave cloud
forcing were rated as less important to the Asian watershed
(shortwave: mean: 5.48; σ: 0.84; longwave: mean: 5.23;
σ: 1.01) than to global climate (shortwave: mean: 5.89; σ:
1.02; longwave: mean: 5.78; σ: 1.02) or Southern Ocean
climate (shortwave: mean: 5.63; σ: 0.86; longwave: mean:
5.56; σ: 0.90). Surface wind stress was rated more important
in the Southern Ocean (mean: 5.84; σ: 1.30), and less im-
portant in the Asian watershed (mean: 5.10; σ: 1.33), com-
pared to its importance to global climate evaluation (mean:
5.81; σ: 1.02). While total cloud liquid water path was rated
as equally important in the Southern Ocean (mean: 5.09; σ:
1.10), Amazon watershed (mean: 5.06; σ: 1.29), and Asian
watershed (mean: 5.13; σ: 1.13), total cloud ice water path
was rated as less important to the evaluation of the model
in the Amazon watershed (mean: 4.45; σ: 1.52) and Asian
watershed (mean: 4.74; σ: 1.22), compared to the Southern

Ocean (mean: 5.03; σ: 1.13).
These differences indicate that experts adjust the impor-

tance assigned to different metrics depending on the science
question or region they are focusing on. As a result, we rec-
ommend that future work focused on understanding or quan-
tifying expert judgments of model fidelity should always be
explicit about the scientific goals for which the model under
assessment will be evaluated.

3.4. Perceived barriers to systematic quantification of
model fidelity

We also explored the community’s perceptions about the
current obstacles to systematic quantification of model fi-
delity (Fig. 7). Survey participants identified the lack of ro-
bust statistical metrics (28%) and lack of analysis tools (10%)
as major barriers, with 17% selecting “all of the above”.

Many participants selected the option “Other” and con-
tributed written comments. We grouped these into qualitative
categories of responses. The most commonly identified is-
sues related to:
• Lacking or inadequate observational constraints and er-

ror estimates for observations (8×);
• Laboriousness of the tuning process (7×); and
• Challenges associated with identifying an appropriate

single metric of model fidelity (7×).
On the final point, many of the comments focused on the

risk of oversimplifying the analysis and evaluation of models:
“Focusing on single metrics over simplifies the analysis too
much to be useful. It is often hard to identify good vs. bad be-
cause one aspect works while others don’t, and different mod-
els have different trade offs.” “No one metric tells the whole
story; this may lead to false confidence in model fidelity.”
Another commenter noted that “it’s very hard to create a sin-
gle metric that accurately encapsulates subjective judgments
of many scientists.” Finally, several respondents noted other
barriers, including a perceived lack of sufficient expertise in
the community, a perception that some widespread practices
are inadequate or inappropriate for model evaluation, and a
lack of sufficient attention to model sensitivities, as opposed
to calibration with respect to present-day mean climate.

Fig. 7. Perceived barriers to systematic quantification of model fidelity. Answers were selected from a prede-
termined list in response to the prompt: “Which one among the following, do you feel, is the biggest barrier
towards systematic quantification of model fidelity?”
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4. Prospects for synthesizing expert assess-

ments and objective model fidelity metrics

As discussed in section 1, there are many potential ap-
plications for a climate model index that summarizes the
model’s fidelity with respect to a particular science goal.
However, one challenge is that an assessment of which mod-
els most resemble the observations depends in part on which
observed variables are evaluated, and how much relative im-
portance is assigned to each of them. A model fidelity index
can be conceptualized as a weighted average of different ob-
jective metrics (Eq. 1), but different experts might reasonably
make different choices in assigning values to the weights, re-
sulting in models potentially being ranked differently by dif-
ferent experts, as illustrated in Fig. 8. Furthermore, the in-
formation that experts implicitly use and the relative impor-
tance they assign to different aspects of the model’s fidelity
when evaluating actual model output, likely differs from their
explicit statements about evaluation criteria. A systematic
approach is needed to understand which information experts
actually use in evaluating models, how much consensus ex-
ists among experts about variable importance when evaluat-
ing real model output, and how sensitive a proposed model
fidelity index would be to differences in these judgments be-
tween experts.

The survey described in this paper represents a first step
towards building that understanding. It also provides base-
line information that will inform and be used in analysis of a

Fig. 8. Illustration of the concept of overall model fidelity rank-
ings and their sensitivity to expert weights. Consider the pair
of models uq1 and uq2, where the overall fidelity of the model
is evaluated as a weighted mean of several component scores.
If uq1 performs better than uq2 on some component scores, but
worse on others, the ranking of these models according to their
overall mean fidelity metric will be sensitive to how strongly
each component metric is weighted. In this example, the rank-
ings of several models using “naive weights” (unweighted av-
erage) are compared to rankings that use importance weights
derived from the responses of two different experts in our sur-
vey.

second planned study, in which experts will be invited to
evaluate the output from real model simulations. This mock
model assessment exercise will enable us to address addi-
tional questions, such as: (1) How much consensus exists
among experts when evaluating the fidelity of actual model
simulations (as opposed to assessing variable importance in
the abstract)? (2) can an index Iinferred be constructed by us-
ing experts’ assessments of real model output to infer the
weights wi,inferred that they implicitly assign to fidelity of dif-
ferent model variables? (3) Do the weights wi,inferred that are
inferred from experts’ assessments of real model output agree
or disagree with the relative importance that experts assigned
to different variables a priori, as reported in this study?

5. Summary and conclusions

In this article we report results from a large community
survey on the relative importance of different variables in
evaluating a climate model’s fidelity with respect to a par-
ticular science goal. We plan to use the results of this study
to inform the development of a follow-up study in which ex-
perts are invited to evaluate actual model outputs.

We show that experts’ rankings are sensitive to the scien-
tific objectives. For instance, surface wind stress was rated as
among the most important variables in evaluation of Southern
Ocean climate, and among the least important in evaluation of
the Asian watershed. This suggests the possibility and util-
ity of designing different and unique collections of metrics,
tailored to specific science questions and objectives, while
accounting explicitly for uncertainty in variable importance.

We find no statistically significant differences between
rankings provided by model developers and model users, sug-
gesting some consistency between the developer and user
communities’ understanding of appropriate evaluation crite-
ria. We also find that our “high experience” group, consisting
mostly of senior scientists with many years of climate mod-
eling experience, and our “low experience” group, consist-
ing mostly of early and mid-career scientists, were in agree-
ment about the importance of most variables for model evalu-
ation. However, within each group, there are also substantial
disagreements and diversity in responses. The level of con-
sensus is particularly low for AOD, which some participants
rated as “extremely important” and others rated as “not at all
important.” Additionally, in our survey sample, greater expe-
rience with evaluating model fidelity was not associated with
greater consensus about the importance of different variables
in model evaluation, and led to only minor changes in es-
timates of variable importance, i.e., to small changes in the
frequency distribution of importance ratings, which are only
statistically significant for a small number of variables.

It is important to note that when experts’ responses on this
survey differ, it does not necessarily imply that their evalua-
tions of actual climate models would also differ. We antici-
pate that experts perform actual model evaluations in a more
holistic manner and draw on much broader information than
was included in this survey. In order to make initial progress
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on this extremely complex topic, we limited the scope of
the study to evaluation of global mean climate, but the time-
dependent behavior of the system is also critical to assess,
as well as features of the coupled climate system. Future
research should extend this approach to include evaluation
of diurnal and seasonal cycles; multi-year modes of climate
variability such as ENSO, QBO, and PDO; extreme weather
events; frequency of extreme precipitation; and other time-
dependent features of the climate system. Other, more com-
plex metrics of model fidelity could also be considered, e.g.,
object-based verification approaches, and scale-aware met-
rics that would be robust to changes in model resolution.

Several study participants noted that issues related to ob-
servational datasets continue to be a major challenge for
model evaluation. This includes logistical issues, such as
their availability through a centralized repository, in standard-
ized formats, and in updated versions as new data become
available. However, more fundamentally, the limitations of
observational constraints continue to be a major obstacle, in-
cluding the lack of observations of certain key model vari-
ables, and the lack of estimates of the observational uncer-
tainty for many datasets. Climate model evaluation efforts
could also benefit from the increased adoption of metrics and
diagnostic visualizations that directly incorporate informa-
tion on observational uncertainty and natural variability, pro-
viding greater transparency and richer contextual information
to users of these tools.

The labor-intensiveness of model evaluation efforts was
noted by several survey participants, and is well-known to
most scientists familiar with climate model development.
Climate modeling centers invest an enormous amount of
computational and human resources into model tuning. At
a rough estimate, tuning a coupled climate model requires
the efforts of about five full-time equivalent (FTE) scientists
and engineers for each major model component (atmosphere,
ocean and sea-ice, and land) as well as five FTEs for the over-
all software engineering and tuning of the coupled system.
An intense tuning effort for a new major version of a coupled
climate model may last for about one year and be repeated
every five years, for an average investment of four FTEs per
year. Globally, there are at least 26 major climate model-
ing centers (the number that participated in CMIP5 project:
http://cmip-pcmdi.llnl.gov/cmip5/availability.html), of which
five are located in the United States (DOE–ACME, NASA–
GISS, NASA–GMAO, NCAR, NOAA–GFDL). Assuming
that the typical cost to support a staff scientist at a climate
modeling center is about $300 thousand per year (includ-
ing salary, fringe, and overhead expenses), we estimate that
the amount of money spent annually on the human effort in-
volved in climate model tuning is roughly $6 million in the
United States and $31.2 million globally.

If appropriate quantitative metrics can be developed that
meaningfully capture the criteria important in a comprehen-
sive model assessment, then algorithms could be applied to
partially automate the calibration process, for instance by
identifying an initial subset of model configurations that pro-
duce plausible climates, subject to further manual inspection

by teams of experts. Further work is needed to assess the
feasibility of such an approach; but if successful, similar ap-
proaches could be valuable in the development not only of
global climate models, but also of regional weather models,
large eddy simulations, and other geophysical and complex
computational models in which multiple aspects of fidelity
must be assessed and weighed against each other.

We suggest that a closer integration of objectively com-
puted metrics with expert understanding of their relative im-
portance has the potential to dramatically improve the effi-
ciency of the model calibration process. The concise vari-
able lists and community ratings reported in this study pro-
vide a snapshot of current expert understanding of the rela-
tive importance of certain aspects of climate model behavior
to their evaluation. This information will be informative to
the broader climate research community, and can serve as a
starting point for the development of more sophisticated eval-
uation and scoring criteria for global climate models, with
respect to specific scientific objectives.

Acknowledgements. The authors would like to express their
sincere gratitude to everyone who participated in the survey de-
scribed in this paper. While privacy restrictions prevent us from
publishing their identities, we greatly appreciate the time that many
busy individuals have taken, voluntarily, to contribute to this re-
search. We would like to thank Hui WAN, Ben KRAVITZ, Hansi
SINGH, and Benjamin WAGMAN for helpful comments and dis-
cussions that helped to inform this work. This research was con-
ducted under the Laboratory Directed Research and Development
Program at PNNL, a multi-program national laboratory operated
by Battelle for the U.S. Department of Energy under Contract DE-
AC05-76RL01830.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

Electronic supplementary material Supplementary material is
available in the online version of this article at https://doi.org/
10.1007/s00376-018-7300-x.

REFERENCES

Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and
N. Bellouin, 2012: Aerosols implicated as a prime driver of
twentieth-century North Atlantic climate variability. Nature,
484, 228–232, https://doi.org/10.1038/nature10946.

Braverman, A., N. Cressie, and J. Teixeira, 2011: A likelihood-
based comparison of temporal models for physical processes.
Statistical Analysis and Data Mining: The ASA Data Science
Journal, 4, 247–258, https://doi.org/10.1002/sam.10113.

Ericsson, K., 1996: The Road to Expert Performance: Empiri-
cal Evidence from the Arts and Sciences, Sports, and Games.
Lawrence Erlbaum Associates, 369 pp.

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance
metrics for climate models. J. Geophys. Res., 113, D06104,
https://doi.org/10.1029/2007JD008972.



SEPTEMBER 2018 BURROWS ET AL. 1113

Herger, N., G. Abramowitz, R. Knutti, O. Angélil, K. Lehmann,
and B. M. Sanderson, 2017: Selecting a climate model subset
to optimise key ensemble properties. Earth System Dynamics,
9, 135–151, https://doi.org/10.5194/esd-9-135-2018.

Hourdin, F., and Coauthors, 2017: The art and science of cli-
mate model tuning. Bull. Amer. Meteor. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1.
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